Introduction 00000 ptual Framework

Gravity Model Results

IO Analysis Results

onclusions and Discussions

Reference: O

How Digital Trade Restrictions Affect China's Employment The Role of Regulatory Differentials with the EU

Xiaolin Wang¹, Su Zhang²

 1 Academy of Mathematics and Systems Science, Chinese Academy of Sciences 2 School of Public Policy and Management, University of Chinese Academy of Sciences

July 2025

Introduction Conceptual Framework Methodology Gravity Model Results IO Analysis Results Conclusions and Discussions References

1 Introduction

- 2 Conceptual Framework and Key Indicators
- **3** Methodology
- 4 Gravity Models for the Effects of Differentials on Bilateral Trade
- **5** Input-Output Analysis for Employment Effects
- **6** Conclusions and Discussions

2/39

Conceptual Framework Metho 0000 0000 Gravity Model Res

IO Analysis Results

Conclusions and Discussions

Reference O

Introduction

Introduction

Background Research Differentials & Question Main Contributions & Findings

- 2 Conceptual Framework and Key Indicators
- **3** Methodology
- 4 Gravity Models for the Effects of Differentials on Bilateral Trade
- **6** Input-Output Analysis for Employment Effects

6 Conclusions and Discussions

3 / 39

Introduction ○●○○○	Conceptual Framework	Methodology 000000000	Gravity Model Results	IO Analysis Results 00000	Conclusions and Discussions	References O
Backgrou	ınd					

Differences in Digital Trade Regulations between China and the EU (Examples)

Domain	China	the EU		
(1) Cross-border data	Requiring certain types of data to be stored	Emphasizing user privacy but allowing		
flow and localization	domestically	compliant data flows		
(2) Source Code Protec-	No explicit commitment to source code	Prohibits forced disclosure of source code		
tion	protection			
(3) Market Access for	Foreign digital service providers face	A relatively open market		
Digital Services	market-entry barriers			

Disputes in Digital Trade Regulations between China and the EU

Date	Dispute
May 2018	GDPR took effect, requiring Chinese companies to comply with strict data protection rules
September 2024	Germany drafted regulations for Chinese online discounters
January 2025	The EU filed a WTO case against China over IP royalty practices

Source: Chen (2018); Reuters; China-Enforcement of intellectual property rights, WT/DS611/9.

Introduction 00000	Conceptual Framework	Methodology 000000000	Gravity Model Results 0000000	IO Analysis Results 00000	Conclusions and Discussions	Refere O

Background (continued)

Notes: DSTRI refers to the Digital Services Trade Restrictiveness Index (OECD). DTRD is computed as DSTRI_{CHN,t} – DSTRI_{j,t}. Data for the left figure comes

from the OECD, while data for the right figure comes from National Beureau of Statistics of China.

How Digital Trade Restrictions Affect China's Employment

 Introduction
 Conceptual Framework
 Methodology
 Gravity Model Results
 IO Analysis Results
 Conclusions and Discussions
 Refer

 Research Differentials & Question

Literature Review

- Measurement of digital trade restrictiveness (Ferracane et al., 2018; Ferencz, 2019)
- **Impact of digital trade regulations on international trade and GVC participation** (Li and Zhu, 2023; Bellucci et al., 2023; Suh and Roh, 2023; Liu, 2024; Nikensari, 2024; Wang and Liu, 2025)
- Economic and employment effects of digital trade regulations (Bauer et al., 2014)

Research Gap

Existing studies have rarely examined how digital trade regulations affect employment. In particular, the impact of cross-country regulatory differentials on employment remains unclear.

Question

To what extent have digital trade restrictiveness differentials between China and the EU affected employment in China?

Introduction ○○○○● Methodology 000000000 Gravity Model Results

IO Analysis Results

Conclusions and Discussions

References O

Main Contributions & Findings

Main Contributions

- Proposing the concept of **digital trade restrictiveness differentials (DTRD)** to measure regulatory differences in digital trade between China and the EU.
- Integrating DTRD and employment outcomes within a unified theoretical framework.
- Quantifying employment effects under two scenarios with a hybrid method including gravity modeling and input-output analysis.

Main Findings

- Export side (CHN → EU): Increasing DTRDs would have caused about 0.74 million job losses, mainly in the service sector but driven by manufacturing exports.
- Import side (CHN ← EU): The same differentials would have created around 0.47–0.52 million jobs, mainly in services, driven by fewer EU service imports boosting domestic production.
- Net impact: These differentials lead to a total loss of about **0.22–0.26** million jobs, mainly in manufacturing.
- Key dimension: The largest employment impacts originate from DTRDs in the infrastructure and connectivity dimension.

Introduction

2 Conceptual Framework and Key Indicators

Conceptual Framework Digital Trade Restrictions and Restrictiveness Differentials

3 Methodology

Gravity Models for the Effects of Differentials on Bilateral Trade

5 Input-Output Analysis for Employment Effects

6 Conclusions and Discussions

8/39

00000		000000000	0000000	00000	O
	al Engra grande				

9/39

Introduction Conceptual Framework Methodology Gravity Model Results IO Analysis Results Conclusions and Discussions Reference of Discussion and Discussions of Conclusions and Discussions and Discussions of Conclusions and Discussions and Di

Digital Trade Restrictions & Restrictiveness Differentials

Introduction Conceptual Framework Methodology OGRAVITY Model Results IO Analysis Results Conclusions and Discussions

Digital Trade Restrictions & Restrictiveness Differentials (continued)

How Digital Trade Restrictions Affect China's Employment

on Conceptual Framework Methodology

y Gravity Model I

IO Analysis Results

Conclusions and Discussions

Reference O

1 Introduction

2 Conceptual Framework and Key Indicators

3 Methodology

Methodological Framework Step 1: Gravity Model Step 2: Input-Output Analysis

4 Gravity Models for the Effects of Differentials on Bilateral Trade

6 Input-Output Analysis for Employment Effects

6 Conclusions and Discussions

Introduction	
00000	

nceptual Frameworl

Methodology ○●○○○○○○○ Gravity Model Results

IO Analysis Results

Conclusions and Discussions

References O

Methodological Framework

Step 1: Gravity Model	
How do digital trade	Main Results If DTRDs remain at their t ₁ levels, while other factors reflect their t ₂ levels, the model yields:
restrictiveness differentials (DTRDs) affect intermediate (z) and final	$ \begin{array}{c} \mathrm{CHN} \Rightarrow \mathrm{EU} \begin{cases} \tilde{z}^{k,s}_{\mathrm{CHN},l_{c},l_{1}}, & j \in \mathrm{EU} \forall k,s \\ \tilde{f}^{k}_{\mathrm{CHN},l_{c},l_{1}}, & j \in \mathrm{EU} \forall k,s \end{cases} \\ \end{array} \\ \begin{array}{c} \mathrm{EU} \Rightarrow \mathrm{CHN} \begin{cases} \tilde{z}^{k,s}_{l,\mathrm{CHN},l_{c},l_{1}}, & i \in \mathrm{EU} \forall k,s \\ \tilde{f}^{k}_{l,\mathrm{CHN},l_{c},l_{1}}, & i \in \mathrm{EU} \forall k,s \end{cases} \end{array}$
goods (<i>f</i>) flows between China and the EU?	Hence, we derive the hypothetical technical coefficients (a) : $\tilde{a}_{CHN,j,l_2,l_1}^{k,s}$ $\tilde{a}_{j,CHN,l_2,l_1}^{k,s}$

13 / 39

Conceptual Framework Methodology

Gravity Model Results

IO Analysis Results

Conclusions and Discussions

References

Step 1: Gravity Model for Quantifying the Impacts of Restrictiveness Differentials on Bilateral Trade

Structural Gravity Model (Anderson and Van Wincoop, 2003)

$$X_{i,j,t}^{k} = \frac{Y_{i,t}^{k} E_{j,t}^{k}}{Y^{k}} \left\{ \frac{\tau_{i,j,t}^{k}}{\prod_{i,t}^{k} P_{j,t}^{k}} \right\}^{1-\sigma_{k}}$$
(1)
$$\Pi_{i,t}^{k} = \sum_{j \in \text{WLD}} \left\{ \frac{\tau_{i,j,t}^{k}}{P_{j,t}^{k}} \right\}^{1-\sigma_{k}} \frac{E_{j,t}^{k}}{Y^{k}}$$
(2)
$$P_{j,t}^{k} = \sum_{i \in \text{WLD}} \left\{ \frac{\tau_{i,j,t}^{k}}{\prod_{i,t}^{k}} \right\}^{1-\sigma_{k}} \frac{Y_{i,t}^{k}}{Y^{k}}$$
(3)

Step 1: Gravity Model for Quantifying the Impacts of Restrictiveness Differentials on Bilateral Trade (continued)

Reformulate Eq.1 as follows:

$$X_{i,j,t}^{k} = \exp\left[\log Y_{i,t}^{k} + \log E_{j,t}^{k} - \log Y^{k} + (1 - \sigma_{k})\left(\log \tau_{i,j,t}^{k} - \log \Pi_{i,t}^{k} - \log P_{j,t}^{k}\right)\right]$$
(4)

In particular, $(1 - \sigma_k) \log \tau_{i,j,t}^k$ can be broken down into the following components (Yotov et al., 2016; Kox et al., 2005; Ferencz, 2019):

$$(1 - \sigma_k)\log\tau_{i,j,t}^k = \beta_1 \ln DIST_{i,j} + \beta_2 CNTG_{i,j} + \beta_3 LANG_{i,j} + \beta_4 CLNY_{i,j} + \beta_6 \ln Tariff_{i,j,t} + \beta_7 DTRD_{i,j,t} + \beta_8 \tau_{i,j,t}$$
(5)

Therefore, once $\hat{\beta}_7$ is estimated, we can isolate the percentage change in bilateral trade attributable to the gap shift from t_1 to t_2 as:

$$\frac{\Delta X_{i,j,t_2,t_1}^k}{X_{i,j,t_1}^k} = \exp[\hat{\beta}_7 \Delta DTRD_{i,j,t_2,t_1}] - 1$$
(6)

July 2025

Methodology Gravity Model Results Introduction 0000000000

Step 1: Gravity Model for Quantifying the Impacts of Restrictiveness Differentials on Bilateral Trade (continued)

Since $X_{i,i,t}^k = \sum_{s} z_{i,i,t}^{k,s} + f_{i,t}^k$, we assume the same percentage change applies to both intermediate (z) and final (f) goods:

The Impacts of DTRD on Bilateral Trade

$$\Delta z_{i,j,t_2,t_1}^{k,s} = \{ \exp[\hat{\beta}_7 \Delta DTRD_{i,j,t_2,t_1}] - 1 \} z_{i,j,t_1}^{k,s}$$

$$\Delta f_{i,j,t_2,t_1}^k = \{ \exp[\hat{\beta}_7 \Delta DTRD_{i,j,t_2,t_1}] - 1 \} f_{i,j,t_1}^k$$
(8)

Following Feenstra and Sasahara (2018), under a scenario where DTRD remains at its t_1 level, while all else reflects t₂, we obtain:

Introduction Conceptual Framework Methodology Gravity Model Results IO Analysis Results Conclusions and Discussions Refer

Step 2: Input-Output Analysis for Estimating Employment Effects Associated with DTRD Changes

The balance between intermediate and final goods flows is expressed as follows:

Following standard IO theory, we derive employment at t_2 (L) as:

$$\mathbf{L}_{t_2} = \Lambda_{t_2} (\mathbf{I} - \mathbf{A}_{t_2})^{-1} \mathbf{F}_{t_2} \boldsymbol{\mu}$$
(10)

Introduction Conceptual Framework Methodology Cravity Model Results IO Analysis Results Conclusions and Discussions Refere OCOMPACTION Conceptual Framework Step 2: Input-Output Analysis for Estimating Employment Effects Associated with DTRD Changes (continued)

Export-Side Employment Effects of DTRD Changes (Los et al., 2015)

$$\tilde{\mathbf{L}}_{t_2,t_1}^{\text{CHN},EX} \equiv \Lambda_{t_2} \left(\mathbf{I} - \mathbf{A}_{t_2} \right)^{-1} \mathbf{F}_{t_2} \mu - \Lambda_{t_2} \left(\mathbf{I} - \tilde{\mathbf{A}}_{t_2,t_1}^{\text{CHN},EX} \right)^{-1} \tilde{\mathbf{F}}_{t_2,t_1}^{\text{CHN},EX} \mu$$
(11)

Where $\tilde{\mathbf{A}}_{t_2,t_1}^{\text{CHN},EX}$ and $\tilde{\mathbf{F}}_{t_2,t_1}^{\text{CHN},EX}$ are illustrated as follows:

Introduction Conceptual Framework Methodology Cravity Model Results IO Analysis Results Conclusions and Discussions Reference Conclusions and Discussions Conclusions Conclusions and Discussions Conclusions Conc

Import-Side Employment Effects of DTRD Changes (Feenstra and Sasahara, 2018)

$$\tilde{\mathbf{L}}_{t_2,t_1}^{IM,CHN} \equiv \Lambda_{t_2} \left(\mathbf{I} - \mathbf{A}_{t_2} \right)^{-1} \mathbf{F}_{t_2} \mu - \Lambda_{t_2} \left(\mathbf{I} - \tilde{\mathbf{A}}_{t_2,t_1}^{IM,CHN} \right)^{-1} \tilde{\mathbf{F}}_{t_2,t_1}^{IM,CHN} \mu$$
(12)

Where $\tilde{\mathbf{A}}_{t_2,t_1}^{IM,\text{CHN}}$ and $\tilde{\mathbf{F}}_{t_2,t_1}^{IM,\text{CHN}}$ are illustrated as follows:

 Introduction
 Conceptual Framework
 Methodology
 Gravity Model Results
 IO Analysis Results
 Conclusions and Discussions
 Reference

 Step 2: Input-Output Analysis for Estimating Employment Effects Associated with DTRD Changes (continued)

Hypothetical Scenarios (Feenstra and Sasahara, 2018)

$$Scenario 1: \begin{cases} \tilde{z}_{CHN,CHN,t_{2},t_{1}}^{k,s} \equiv z_{CHN,CHN,t_{2}}^{k,s} + \sum_{i \in EU} \left(z_{i,CHN,t_{2}}^{k,s} - \tilde{z}_{i,CHN,t_{2},t_{1}}^{k,s} \right), \\ \tilde{f}_{CHN,CHN,t_{2},t_{1}}^{k} \equiv f_{CHN,CHN,t_{2}}^{k,s} + \sum_{i \in EU} \left(f_{i,CHN,t_{2}}^{k,s} - \tilde{f}_{i,CHN,t_{2},t_{1}}^{k,s} \right), \end{cases}$$
(13)

$$Scenario 2: \begin{cases} \tilde{z}_{CHN,CHN,t_{2},t_{1}}^{k,s} \equiv \frac{z_{i,CHN,CHN,t_{2}}^{k,s} + \sum_{i \notin EU} \tilde{z}_{i,CHN,t_{2}}^{k,s}}{\sum_{i \in EU} \tilde{z}_{i,CHN,t_{2}}^{k,s} + \sum_{i \notin EU} \tilde{z}_{i,CHN,t_{2}}^{k,s}} \\ Hypothetical share of Chinese producers \end{cases} \times \underbrace{\sum_{i \in WLD} z_{i,CHN,t_{2}}^{k,s}}_{i \in WLD} = \underbrace{f_{i,CHN,t_{2}}^{k,s} + \sum_{i \notin EU} \tilde{z}_{i,CHN,t_{2}}^{k,s}}_{Hypothetical share of Chinese producers} \\ \tilde{f}_{CHN,CHN,t_{2},t_{1}}^{k} \equiv \underbrace{\frac{f_{i,CHN,t_{2}}^{k,s} + \sum_{i \notin EU} \tilde{z}_{i,CHN,t_{2}}^{k,s}}{\sum_{i \in EU} \tilde{f}_{i,CHN,t_{2}}^{k} + \sum_{i \notin EU} f_{i,CHN,t_{2}}^{k}} \\ + \underbrace{\sum_{i \in WLD} f_{i,CHN,t_{2}}^{k,c}}_{Hypothetical share of Chinese producers} \\ F_{i,CHN,CHN,t_{2},t_{1}}^{k} \equiv \underbrace{\frac{f_{i,CHN,t_{2}}^{k} + \sum_{i \notin EU} f_{i,CHN,t_{2}}^{k}}{\sum_{i \in EU} \tilde{f}_{i,CHN,t_{2}}^{k} + \sum_{i \notin EU} f_{i,CHN,t_{2}}^{k}} \\ + \underbrace{F_{i} \in UID} f_{i,CHN,t_{2}}^{k} + \sum_{i \notin EU} f_{i,CHN,t_{2}}^{k}}}_{Total final-good demand in China} \\ \\ F_{i} \in WLD} \\ \end{bmatrix}$$

How Digital Trade Restrictions Affect China's Employment

Introduction

2 Conceptual Framework and Key Indicators

3 Methodology

Gravity Models for the Effects of Differentials on Bilateral Trade Econometric Specification and Data Empirical Results

6 Input-Output Analysis for Employment Effects

6 Conclusions and Discussions

Introduction Conceptual Framework Methodology Ocococo Gravity Model Results IO Analysis Results Conclusions and Discussions Refere

Econometric Specification and Data

PPML-Based Econometric Specification (Silva and Tenreyro, 2006)

$$\begin{bmatrix} X_{i,j,t}^{k} = \exp[\alpha_{0}^{k} + \alpha_{1}^{k} \ln Tariff_{i,j,t}^{k} + \alpha_{2}^{k} DTRD_{j,t} + \alpha_{3}^{k} Corr_{j,t} + \alpha_{4}^{k} \ln E_{j,t}^{k} + \alpha_{5}^{k} \ln R_{j,t}^{k} + \sigma_{t} + \eta_{t}^{k} + \gamma_{i,j}] + \epsilon_{i,j,t}^{k}, \\ i = \text{CHN } j \in \text{EU} \\ X_{i,j,t}^{k} = \exp[\beta_{0}^{k} + \beta_{1}^{k} \ln Tariff_{i,j,t}^{k} + \beta_{2}^{k} DTRD_{i,t} + \beta_{3}^{k} Corr_{i,t} + \beta_{4}^{k} \ln Y_{i,t}^{k} + \beta_{5}^{k} \ln R_{i,t}^{k} + \sigma_{t} + \eta_{t}^{k} + \gamma_{i,j}] + \epsilon_{i,j,t}^{k}, \\ i \in \text{EU } j = \text{CHN} \end{aligned}$$

$$(15)$$

•
$$Tariff_{i,j,t}^k$$
 (Bouët et al., 2004, 2008):

$$Tariff_{i,j,t}^{k} = \sum m \in k \left(\frac{Weight_{i,j,t}^{m}}{Weight_{i,j,t}^{k}} \times MaxAVE_{ij,t}^{m} \right), \quad Weight_{i,j,t}^{m} = X_{i,Ref(j),t}^{m} \frac{X_{.j,t}}{X_{.Ref(j),t}}$$

• *DTRD*²; *Corr* (Gil-Pareja et al., 2019)³

¹Source: CEPII-BACI, MAcMap
 ²Source: OECD
 ³Source: ICRG

Presenter: Xiaolin Wang (AMSS)

 Introduction
 Conceptual Framework
 Methodology
 Gravity Model Results
 IO Analysis Results
 Conclusions and Discussions
 Reference

 Econometric Specification and Data (continued)
 PPML-Based Econometric Specification (Silva and Tenreyro, 2006)
 Pometric Specification (Silva and Tenreyro, 2006)
 Pometric Specification (Silva and Tenreyro, 2006)

$$\begin{cases} X_{i,j,t}^{k} = \exp[\alpha_{0}^{k} + \alpha_{1}^{k} \ln Tariff_{i,j,t}^{k} + \alpha_{2}^{k} DTRD_{j,t} + \alpha_{3}^{k} Corr_{j,t} + \alpha_{4}^{k} \ln E_{j,t}^{k} + \alpha_{5}^{k} \ln R_{j,t}^{k} + \sigma_{t} + \eta_{t}^{k} + \gamma_{i,j}] + \epsilon_{i,j,t}^{k}, \\ i = \text{CHN } j \in \text{EU} \\ X_{i,j,t}^{k} = \exp[\beta_{0}^{k} + \beta_{1}^{k} \ln Tariff_{i,j,t}^{k} + \beta_{2}^{k} DTRD_{i,t} + \beta_{3}^{k} Corr_{i,t} + \beta_{4}^{k} \ln Y_{i,t}^{k} + \beta_{5}^{k} \ln R_{i,t}^{k} + \sigma_{t} + \eta_{t}^{k} + \gamma_{i,j}] + \epsilon_{i,j,t}^{k}, \\ i \in \text{EU } j = \text{CHN} \end{cases}$$

$$(16)$$

- $E_{j,t}^k, Y_{i,t}^{k,:4} E_{j,t} = \sum_i \sum_s Z_{ij,t}^{k,s} + \sum_i f_{ij,t}^k, \quad Y_{i,t} = \sum_j \sum_s Z_{ij,t}^{k,s} + \sum_j f_{ij,t}^k$
- $R_{j,t}^k, R_{i,t}^k$ (Suh and Roh, 2023):⁵ $R_{j,t}^k = \sum_i \left[\frac{GDP_{i,t}}{GDP_{,t}} \cdot distw_{ij,t} \cdot \mathbb{1}_{X_{ij,t}} \right], R_{i,t}^k = \sum_j \left[\frac{GDP_{j,t}}{GDP_{,t}} \cdot distw_{ij,t} \cdot \mathbb{1}_{X_{ij,t}} \right]$
- $\gamma_{i,j}$ (Baier and Bergstrand, 2007): the use of country-pair fixed effects can eliminate endogeneity from omitted variables.

⁴Source: OECD

⁵Source: OECD, WDI, CEPII-Gravity

Presenter: Xiaolin Wang (AMSS)

Introduction Conceptual Framework Methodology Oravity Model Results 10 Analysis Results Conclusions and Discussions References of Conceptual Framework and Discussions and Discussions of Conceptual Framework Conceptual F

- Time period: 2014–2020
- Country coverage: 18 EU member states⁶ & China (CHN)
- Sector coverage: 45 sectors as defined by OECD. Specifically, A01_02–B09 belong to natural resources sectors; C10T12–C31T33 belong to manufacturing sectors; D–T belong to services sectors

Variable	Obs	Moon	SD	Min	Max	Variable	Obs	Moon	SD	Min	Max
variable	ODS.	Wiean	3D	IVIIII	wiax	variable	ODS.	wiean	3D	IVIIII	wax
Panel A:	CHN to	EU				Panel B: E	U to CH	N			
Х	5670	339.4	1311	0	31000	X	5670	298.6	1221	0	25000
InTariff	5670	0.0250	0.0400	0	0.457	lnTariff	5670	0.0430	0.0450	0	0.499
DTRD	5670	0.194	0.0710	0.0250	0.326	DTRD	5670	0.194	0.0710	0.0250	0.326
Corr	5670	4.104	1.009	2.042	5.917	Corr	5670	4.104	1.009	2.042	5.917
lnE	5670	8.785	1.975	1.390	13.35	lnY	5670	8.621	2.249	0	13.39
lnRj	5670	8.487	1.245	0.00100	9.174	lnRi	5670	8.431	1.531	0	9.184

Descriptive Statistics

⁶Austria (AUT), Belgium (BEL), Denmark (DNK), Estonia (EST), Finland (FIN), France (FRA), Germany (DEU), Greece (GRC), Hungary (HUN), Italy (ITA), Latvia (LVA), Lithuania (LTU), Luxembourg (LUX), Netherlands (NLD), Portugal (PRT), Slovenia (SVN), Sweden (SWE), Spain (ESP)

Presenter: Xiaolin Wang (AMSS)

Introduction 00000 Conceptual Fram

ork Method

Devela, Estimation Developfing Chinada Francisco de Ales FI

Gravity Model Results ○○○○●○○ IO Analysis Results

Conclusions and Discussions

References O

Empirical Results

Panel A: Estimation Results for China's Exports to the EO						
	(1)	(2)	(3)			
	All	Manufacturing	Services			
lnTariff	-2.239	-0.143				
	(2.332)	(2.283)				
DTRD	-0.465**	-0.424**	-0.832***			
	(0.183)	(0.211)	(0.180)			
Corr	0.108^{***}	0.103**	0.095^{**}			
	(0.039)	(0.041)	(0.047)			
lnE	0.693^{***}	0.552^{***}	1.217^{***}			
	(0.089)	(0.070)	(0.221)			
lnRj	4.596^{***}	3.230^{*}	6.816			
	(1.434)	(1.777)	(4.901)			
Constant	-40.472^{***}	-26.708*	-67.198			
	(12.786)	(15.978)	(42.696)			
t FE, k,t FE, i,j FE	Yes	Yes	Yes			
N	5,040	2,772	2,268			
11	-1.13e+05	-65947.06	-36790.77			

Key Findings (Export-Side)

- On average, a 0.1-point increase in the DTRD is associated with a 4.55% reduction in China's exports to the EU (All sectors).
- 2 China's services exports to the EU (-7.98%) are more negatively affected than manufacturing exports (-4.16%).

Std. errors clustered by country pair, in parentheses * p<0.1, ** p<0.05, *** p<0.01

Introduction 00000 nceptual Framework

Methodology 00000000 Gravity Model Results ○○○○○●○ IO Analysis Results

Conclusions and Discussions

References O

Empirical Results (continued)

Tuner D. Estimation Results for China's Imports from the EO						
	(1)	(2)	(3)			
	All	Manufacturing	Services			
lnTariff	-0.015	-0.994				
	(0.819)	(1.078)				
DTRD	-0.380**	-0.187	-0.634***			
	(0.167)	(0.246)	(0.214)			
Corr	0.080	0.035	0.131^{*}			
	(0.052)	(0.065)	(0.071)			
lnY	1.413^{***}	1.653^{***}	1.095^{***}			
	(0.067)	(0.073)	(0.100)			
lnRi	2.153	2.709	3.455			
	(1.847)	(1.860)	(4.064)			
Constant	-27.720^{*}	-34.718**	-36.056			
	(16.637)	(16.478)	(36.449)			
t FE, k,t FE, i,j FE	Yes	Yes	Yes			
N	5,544	2,772	2,772			
11	-1.65e+05	-83316.42	-68555.87			

Panel B: Estimation Results for China's Imports from the EII

Std. errors clustered by country pair, in parentheses * p<0.1, ** p<0.05, *** p<0.01

Key Findings (Import-Side)

- DTRD has a **significant negative effect** on the EU's total (-3.73%) and services (-6.15%) exports to China, while the effect on manufacturing exports (-1.86%) is not statistically significant.^{*a*}
- Compared with the export-side results, these import-side effects are generally smaller in magnitude.

^{*a*}We still include these point estimates in subsequent IO analysis to maintain consistency across sectors.

Introduction	Conceptual Framework	Methodology	Gravity Model Results	IO Analysis Results	Conclusions and Discussions	Refere
00000	0000	000000000	○○○○○○●	00000		O
Empirica	l Results (conti	nued)				

Estimation Results: DTRD (Infrastructure	Connectivity)

	Chi	ina's Exports to the	EU	China's Imports from the EU			
	(1) (2) (3)		(4)	(5)	(6)		
	All	Manufacturing	Services	All	Manufacturing	Services	
DTRD_1	-0.448**	-0.412**	-0.815***	-0.370**	-0.160	-0.629***	
	(0.177)	(0.200)	(0.164)	(0.147)	(0.224)	(0.181)	
Other Controls	Yes	Yes	Yes	Yes	Yes	Yes	
t FE, k,t FE, i,j FE	Yes	Yes	Yes	Yes	Yes	Yes	
Ν	5,040	2,772	2,268	5,544	2,772	2,772	
11	-1.13e+05	-65944.07	-36788.38	-1.65e+05	-83316.51	-68552.98	

Standard errors in parentheses

* p<0.1, ** p<0.05, *** p<0.01

Key Findings (by DTRD dimension)

Compared to other dimensions, DTRD in the infrastructure and connectivity dimension contributes the most to the overall negative effects on China-EU bilateral trade.

Introduction Conceptual Framework Methodology Gravity Model Results IO Analysis Results Conclusions and Discussions References

Introduction

- 2 Conceptual Framework and Key Indicators
- **3** Methodology
- 4 Gravity Models for the Effects of Differentials on Bilateral Trade

5 Input-Output Analysis for Employment Effects

Export-Side Employment Effects of DTRD Changes Import-Side Employment Effects of DTRD Changes Net Employment Effects of DTRD Changes

6 Conclusions and Discussions

_	o. 1 - 1	T 00				
Introduction 00000	Conceptual Framework	Methodology 000000000	Gravity Model Results	IO Analysis Results ○●○○○	Conclusions and Discussions	Re O

Export-Side Employment Effects of DTRD Changes

		DTRD_1			
	Resources	Manufacturing	Services	All	All
Trade in natural resources	-13.524	-14.651	98.377	70.202	65.198
Trade in manufacturing	-110.183	-236.788	-153.132	-500.103	-407.090
Trade in services	-20.898	-18.579	-267.020	-306.498	-254.113
Trade in all sectors	-144.605	-270.019	-321.775	- 736.399	-596.006

Notes. Rows represent the sector of trade; columns represent impacted employment sectors. All figures are employment changes in thousands of workers.

- A rise in DTRD would have resulted in approximately **0.74 million** job losses in China, with the services sector (-0.32 million) most severely impacted.
- 2 The primary channel of employment losses is through trade in manufacturing sectors, accounting for about **0.50 million** job losses.
- (3) Employment losses are predominantly driven by DTRD in the infrastructure and connectivity dimension.
- In the services trade scenario, 54% of job losses would have stemmed from intermediate goods exports, a higher proportion than in the overall (48%) or manufacturing trade scenario (46%).

Introduction Conceptual Framework Methodology Oravity Model Results IO Analysis Results Conclusions and Discussions R

Import-Side Employment Effects of DTRD Changes

Import-Side (Scenario 1, S1): Estimated Employment Effects in China									
		DTRD_1							
	Resources	Manufacturing	Services	All	All				
Trade in natural resources	23.104	50.749	-87.781	-13.928	-5.585				
Trade in manufacturing	26.4	59.647	45.803	131.85	94.735				
Trade in services	33.788	23.928	345.318	403.034	337.421				
Trade in all sectors	83.292	134.324	303.34	520.956	426.571				

Notes. Rows represent the sector of trade; columns represent impacted employment sectors. All figures are employment changes in thousands of workers.

- DTRD expansion under S1 would have added about 0.52 million jobs in China, with services experiencing the largest gains (0.3 million). In S2, the total gain would have reached 0.47 million, also led by services (0.27 million).
- Most of these gains would have occurred through trade in service sectors, reaching 0.40 million in S1 (0.36 million in S2).
- Unlike on the export side (dominated by final goods), import-side effects would primarily come from intermediate goods imported from the EU (63% in both senarios).

30 / 39

Introduction Conceptual Framework Methodology Gravity Model Results IO Analysis Results Conclusions and Discussions Referer O

Import-Side Employment Effects of DTRD Changes (continued)

		DTRD_1			
	Resources	Manufacturing	Services	All	All
Trade in natural resources	22.59	47.051	-76.485	-6.844	0.045
Trade in manufacturing	24.713	54.817	42.092	121.622	87.412
Trade in services	29.647	20.725	306.675	357.046	298.945
Trade in all sectors	76.949	122.593	272.282	471.825	386.401

Import-Side (Scenario 2, S2): Estimated Employment Effects in China

Notes. Rows represent the sector of trade; columns represent impacted employment sectors. All figures are employment changes in thousands of workers.

Key Insight

Even under different assumptions about China's internal trade (whether fully substitutable or only partially so), the import-side employment outcomes remain largely unchanged. This suggests the robustness of our results between S1 and S2.

Introduction 00000 ptual Framework

Methodolo 0000000

Estimated Net Employment Effects in China

Gravity Model Results

IO Analysis Results

Conclusions and Discussions

References O

Net Employment Effects of DTRD Changes

Trade type	Sector of employment	Scenario 1	Scenario 2			
	Resources	-61.314	-67.656			
Trade in	Manufacturing	-135.695	-147.425			
all sectors	Services	-18.435	-49.493			
	All	-215.443	-264.574			
	Resources	9.579	9.066			
Trade in	Manufacturing	36.098	32.400			
natural resources	Services	10.596	21.892			
	urces Services All	56.274	63.358			
	Resources	-83.783	-85.470			
Trade in	Manufacturing	-177.142	-181.971			
manufacturing	Services	-107.329	-111.040			
	All	-368.253	-378.481			
	Resources	12.890	8.748			
Trade in	Manufacturing	5.349	2.146			
services	Services	78.298	39.655			
	All	96.537	50.549			

Notes. All figures are employment changes in thousands of workers.

Key Findings

- Overall, widening DTRD implies net job losses in China (-0.22 to -0.26 million), primarily concentrated in manufacturing employment.
- Employment losses are largely driven by manufacturing-sector trade, accounting for approximately -0.37 million jobs in both scenarios.
- However, these negative effects are partially offset by employment gains from trade in services and natural resources sectors.

Introduction	Conceptual Framework	Methodology	Gravity Model Results	IO Analysis Results	Conclusions and Discussions	References
00000		00000000	0000000	00000	●○○	O

1 Introduction

- 2 Conceptual Framework and Key Indicators
- **3** Methodology
- 4 Gravity Models for the Effects of Differentials on Bilateral Trade
- **5** Input-Output Analysis for Employment Effects

6 Conclusions and Discussions

Conclusions Discussions

Introduction	Conceptual Framework	Methodology	Gravity Model Results	IO Analysis Results	Conclusions and Discussions	Reference
00000		000000000	0000000	00000	○●○	O
Conclusio	ons					

- Export side (CHN → EU): Increasing differentials would have resulted in 0.74 million job losses in China, primarily affecting the services sector (0.32 million losses). Manufacturing exports would account for over 68% of these losses.
- Import side (CHN ← EU): The same differentials would have created 0.47–0.52 million jobs, again mostly in services (0.27–0.30 million), due to fewer service imports from the EU stimulating domestic production.
- Net impact: About 0.22–0.26 million in total job losses, primarily in manufacturing (0.14 million losses). While manufacturing final goods exports would have borne the brunt, part of the loss would have been offset by gains from trade in services and natural resources.
- Employment effects are mainly driven by digital trade restrictiveness differentials in the infrastructure and connectivity dimension, underscoring its critical role in shaping China-EU digital trade and labor market outcomes.

China's Personal Information Protection Law (PIPL), along with the Cybersecurity Law (CSL) and Data Security Law (DSL), ensures robust data security but introduces more complexity than the EU's GDPR.⁷. To mitigate adverse employment effects of restrictiveness differentials, it is advisable to reference GDPR's **multiple cross-border transfer frameworks, simplify approval procedures, and coordinate multi-department rules**.

This balanced approach can narrow the regulatory differential, thereby reducing potential job losses while still safeguarding national data interests. In particular, streamlining data handling requirements and selectively aligning with international standards can help sustain manufacturing competitiveness.

⁷https://www.dlapiperdataprotection.com/index.html?c=CN&t=law

Introduction 00000	Conceptual Framework	Methodology 000000000	Gravity Model Results 0000000	IO Analysis Results 00000	Conclusions and Discussions	Re O
Reference	es I					

James E Anderson and Eric Van Wincoop. Gravity with gravitas: A solution to the border puzzle. *American economic review*, 93(1):170–192, 2003.

- Scott L Baier and Jeffrey H Bergstrand. Do free trade agreements actually increase members' international trade? Journal of international Economics, 71(1):72–95, 2007.
- Matthias Bauer, Hosuk Lee-Makiyama, Erik Van der Marel, and Bert Verschelde. The costs of data localisation: Friendly fire on economic recovery. ECIPE Occasional Paper 3/2014, European Centre for International Political Economy (ECIPE), Brussels, 2014. URL https://ecipe.org/publications/the-costs-of-data-localisation/.
- C. Bellucci, S. Rubínová, and R. Piermartini. Better together: How digital connectivity and regulation reduce trade costs. WTO Staff Working Paper ERSD-2023-07, World Trade Organization (WTO), 2023.
- Antoine Bouët, Yvan Decreux, Lionel Fontagné, Sébastien Jean, and David Laborde. A consistent, ad-valorem equivalent measure of applied protection across the world: The macmap-hs6 database. 2004.
- Antoine Bouët, Yvan Decreux, Lionel Fontagné, Sébastien Jean, and David Laborde. Assessing applied protection across the world. *Review of International Economics*, 16(5):850–863, 2008.

Weiquan Chen. The impact of gdpr on chinese enterprises. 2018.

Simon J. Evenett and Johannes Fritz. Emergent digital fragmentation: The perils of unilateralism. Technical report, Digital Policy Alert and Global Trade Alert, CEPR Press, London, 2022.

Robert C Feenstra and Akira Sasahara. The china shock, exports and us employment: A global input–output analysis. *Review of International Economics*, 26(5):1053–1083, 2018.

eferences

Introduction 00000	Conceptual Framework	Methodology 000000000	Gravity Model Results	IO Analysis Results 00000	Conclusions and Discussions	References O
Reference	es II					

Janos Ferencz. The oecd digital services trade restrictiveness index. 2019.

- Martina Francesca Ferracane, Hosuk Lee-Makiyama, and Erik Van Der Marel. Digital trade restrictiveness index. *European Center for International Political Economy*, 5, 2018.
- Salvador Gil-Pareja, Rafael Llorca-Vivero, and José Antonio Martínez-Serrano. Corruption and international trade: A comprehensive analysis with gravity. *Applied Economic Analysis*, 27(79):3–20, 2019.
- Henk Kox, Arjan M Lejour, et al. *Regulatory heterogeneity as obstacle for international services trade*, volume 49. CPB Netherlands Bureau for Economic Policy Analysis The Hague, the Netherlands, 2005.
- Y. Li and S. Zhu. Impact of digital services trade restrictiveness on manufacturing export efficiency. *Applied Economics*, pages 1–15, 2023.
- Jiang R. Zhang Y. Dai J. Cheng J Liu, Y. Mitigating digital trade barriers: Strategies for enhancing national value chains performance. *International Review of Economics Finance*, 2024.
- Bart Los, Marcel P Timmer, and Gaaitzen J de Vries. How important are exports for job growth in china? a demand side analysis. *Journal of Comparative Economics*, 43(1):19–32, 2015.
- Oktavilla S. Istikomah N. Puspitasari N. F. D Nikensari, S. I. The role of digital services trade restrictiveness in exports: Before and during covid19. *Comparative Economic Research. Central and Eastern Europe*, 27(1):113–127, 2024.
- JMC Santos Silva and Silvana Tenreyro. The log of gravity. The Review of Economics and statistics, pages 641-658, 2006.
- J. Suh and J. Roh. The effects of digital trade policies on digital trade. *The World Economy*, 46(8):2383–2407, 2023.

37 / 39

Introduction 00000	Conceptual Framework	Methodology 000000000	Gravity Model Results	IO Analysis Results 00000	Conclusions and Discussions	References O
Reference	es III					

Y. Wang and B. Liu. The impact of digital trade rules on services trade: An empirical investigation from the dva perspective. *Review of International Economics*, 2025.

Stephen Weymouth. Digital globalization: politics, policy, and a governance paradox. Cambridge University Press, 2023.

Yoto V Yotov, Roberta Piermartini, Mario Larch, et al. *An advanced guide to trade policy analysis: The structural gravity model.* WTO iLibrary, 2016.

Gravity Model Results Introduction Methodology

Thank You Q&A

Special thanks to Prof. Cuihong Yang and Prof. Erik Dietzenbacher for their valuable guidance and support.

Contact: Xiaolin Wang (wangxiaolin@amss.ac.cn)