Preliminary Findings | Suggestions Appreciated

SCHOOL OF APPLIED ECONOMICS RENMIN UNIVERSITY OF CHINA

Measuring Regional Specialization in China's Counties: An Upstreamness Perspective

Yongbiao Fang, Wantong Li, Jiansuo Pei

July 2025, IIOA

Motivation

- Production fragmentation & specialization
 - Drive complex division of labor within production networks
- Unequal Gains Across Stages
 - Different countries or regions at different stages capture varying value-added
 - → Raises questions about *Economic Efficiency* vs. *Inequality*

Motivation

Measuring a region's position within the network is essential to analyze its impact!

Figure 2: GVC Positioning over Time (World Average)

Source: Antràs and Chor(2018)

Evolution of GVC Measures within Country-Industries over Time (U)_{j,t} s (U)_{j,t} s (D)_{j,t} s Dependent variable: F/GOj,t F/GO_{it}s VA/GO_{it}s VA/GO_{it}s (D)_{j,t} (2) (5) (6) (8) (1) (3) (4) (7) -0.0009* -0.0017*** 0.0064*** 0.0084*** Yea [0.0004] [0.0005] [0.0015] [0.0017] (Dum: Year=1996) -0.0002 -0.0012 -0.0060 0.0019 [0.0025] [0.0026] [0.0083] [0.0079] (Dum: Year=1997) -0.0015 -0.0024 0.0026 0.0061 [0.0020] [0.0020] [0.0068] [0.0062] -0.0129** -0.0085* 0.0026** 0.0002 (Dum: Year=1998) [0.0010] [0.0015] [0.0032] [0.0043] 0.0029*** -0.0005 -0.0086** -0.0073*** (Dum: Year=1999) [0.0004] [0.0005] [0.0010] [0.0025] -0.0094** (Dum: Year=2000) -0.0015 0.0140** 0.0311*** [0.0014] [0.0016] [0.0045] [0.0044] (Dum: Year=2001) -0.0022 -0.0122*** 0.0182** 0.0394*** [0.0021] [0.0065] [0.0020] [0.0053] (Dum: Year=2002) -0.0010 -0.0091*** 0.0069 0.0218*** [0.0024] [0.0022] [0.0069] [0.0054] -0.0102*** 0.0204* 0.0334*** (Dum: Year=2003) -0.0033 [0.0027] [0.0022] [0.0082] [0.0059] 0.0346*** (Dum: Year=2004) -0.0052 -0.0135*** 0.0490*** [0.0030] [0.0025] [0.0100] [0.0079] (Dum: Year=2005) -0.0061* -0.0153** 0.0421** 0.0657** [0.0031] [0.0032] [0.0099] [0.0101] 0.0598*** (Dum: Year=2006) -0.0084** -0.0208** 0.0919*** [0.0033] [0.0036] [0.0117] [0.0115] (Dum: Year=2007) -0.0119*** -0.0237*** 0.0797*** 0.1103** [0.0038] [0.0039] [0.0137] [0.0133] -0.0130*** -0.0287*** 0.0894*** 0.1333*** (Dum: Year=2008) [0.0044][0.0048] [0.0159] [0.0154] (Dum: Year=2009) -0.0075 -0.0164*** 0.0562*** 0.0746** [0.0052] [0.0052] [0.0171] [0.0150] -0.0211*** 0.0738*** 0.1027*** (Dum: Year=2010) -0.0102* [0.0055] [0.0053] [0.0180] [0.0167] 0.0822*** (Dum: Year=2011) -0.0226*** 0.1110*** -0.0111* [0.0055] [0.0054] [0.0179] [0.0168] Y Country-Industry FE? Y Y Y Y Y Υ Observations 24,076 24.076 24,395 24.395 24,395 24,395 24,395 24,395 0.9709 0.9709 0.9491 0.9495 0.9632 0.9636 0.9444 0.9460

Table 2

Motivation

- The Gap: Intra-National Focus
 - Limited research exists on division of labor between regions within a single country
 - Regions possess distinct *comparative advantages* (including natural resources, industrial base, technical capability...)
 - China: Vast territory and Significant regional economic disparities

Related Literature

- Global Production Patterns and Globalization: Yeats (1997); Jones & Kierzkowski (1990); Hummels et al. (2001); Baldwin (2009); Koopman et al. (2012)
 - Economic Gains from Global Division of Labor: Liu et al. (2010); Tajoli & Felice (2018); Chor et al. (2021); Song et al. (2021); Borin et al. (2021)
 - Inequality Effects: Basco & Mestieri (2019); Baldwin et al. (2021); Han & Liu (2024)
 - The Smile Curve: Meng et al.(2015); Baldwin & Ito (2021); Stöllinger (2021); Antreoni & Anzolin (2025)
- Quantifying Positions in Global Value Chain
 - APL: Dietzenbacher & Romero (2005, 2007); Inomata (2008); Fally (2012); Ni et al. (2016); Wang et al. (2017); Chen (2018)
 - Upstreamness: Antràs et al. (2012); Fally (2012); Suganuma (2016); Miller & Temurshoev (2017); Aroca & Jackson (2018); Antràs et al. (2018)
- Extensions of Upstreamness
 - Industry and Economic Shock: Aroca & Jackson (2018); Li (2018); Suganuma (2016); Yang (2024)
 - Applications at Regional and Firm Level: Lukin (2019); Chor et al. (2021)

Research Questions

- Measurement: How to compute county-level upstreamness by weighting national industry upstreamness with output shares?
- 2. Dynamics: What are the temporal and spatial evolution patterns of upstreamness across Chinese counties?
- 3. How does regional division of labor affect intra-regional disparities?
 - Determinants & Impacts : What's the relationship between cross-county different positions and some socio-economic factors?
 - How does a nation's internal division of labor positioning shape regional economic development levels and value distribution?

Upstreamness : From Industry to County

- County-level Upstreamness
- The Best Choice: County-level IO Tables
- The Method we use: the product of the industry's national upstreamness and its share of the county's total output

$$J_k = \sum_i U_i \cdot \frac{P_{ki}}{P_k}$$

Conceptual Framework: How to Calculate Upstreamness?

- "A weighted average of the distances of intermediate products to final demand production"
- Step 1: Decomposition of total output

$$Y_{i} = F_{i} + \sum_{j=1}^{N} d_{ij}F_{j} + \sum_{j=1}^{N} \sum_{k=1}^{N} d_{ik} d_{kj}F_{j} + \sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{l=1}^{N} d_{il} d_{lk} d_{kj}F_{j} + \cdots$$

• Step 2: Calculation of upstreamness (Antràs et al., 2012)

$$U_{i} = 1 \times \frac{F_{i}}{Y_{i}} + 2 \times \frac{\sum_{j=1}^{N} d_{ij}F_{j}}{Y_{i}} + 3 \times \frac{\sum_{j=1}^{N} \sum_{k=1}^{N} d_{ik} d_{kj}F_{j}}{Y_{i}} + 4 \times \frac{\sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{l=1}^{N} d_{il} d_{lk} d_{kj}F_{j}}{Y_{i}} + \cdots$$

• Step 3: Simplification $U = [I - \Delta]^{-1}u$

Conceptual Framework: Upstreamness in open economy

In reality: Trade with other countries

Step 1: Decomposition of total output (considering Exports and Imports)

$$Y_i = F_i + \sum_{j=1}^N d_{ij}Y_j + X_i - M_i$$

- Step 2: Adjusted input coefficient: $\hat{d}_{ij} = d_{ij} \cdot \frac{Y_i}{Y_i X_i + M_i}$
- Step 3: Calculation (Simplified)

$$U = \left[I - \hat{\Delta}\right]^{-1} u$$

Upstreamness : From Industry to County

- The Method we use: the product of the industry's national upstreamness and its share of the county's total output
- Why it works?
 - Assumption: the division of labor for the same industry across regions is similar, with no significant differences in upstreamness
 - It's reasonable: The clearer the definition, the more similar it is across regions (Industry classification in IO tables: 122 to 149 sectors)

Upstreamness : From Industry to County

- The Method we use: the product of the industry's national upstreamness and its share of the county's total output
- How to get each industry's output share?
 - According to micro-level enterprise database (ASIF and ATS)
 - Aggregating enterprise-level total output to derive industry-level output share

Data Sources

- National Input-Output Tables (benchmark years:1997, 2002, 2007, 2012, 2017)
 - Used to compute industry-level upstreamness
- China Annual Survey of Industrial Firms (1998–2014)
 - includes all state-owned and large non-state-owned industrial enterprises in China from 1998 to 2014, totaling over 4.35 million observations across 16 years
 - Microdata on firm output, location, and industry classification
- National Tax Survey Database (2007–2020)
 - Supplementary firm-level data covering smaller enterprises
- County-Level Statistical Yearbooks (2000–2015)
 - Socioeconomic indicators for counties

Data Sources

Representative Micro-level Database:

China Annual Survey of Industrial Firms (1998–2014)

Year	Number of Observations	Total Output (Billion Yuan)	Proportion of Industrial Sector Output
2002	181,557	11077.65	78.58%
2007	336,768	40514.29	90.53%
2012	308,863	81137.66	99.61%

• National Tax Survey Database (2007–2020)

Year	Number of Observations	Total Output (Billion Yuan)	Proportion of Total Industry Output
2007	313,051	43283.232	52.86%
2012	696,761	27520.581	38.01%

Stylized Facts: Time Trends

14

Stylized Facts: Time Trends

Stylized Facts: Spatial Distribution

Stylized Facts: Spatial Distribution

Correlation with GDP per capita

Correlation– More developed Provinces

Upstreamness vs Economic Development

Upstreamness vs Economic Development

Upstreamness vs Economic Development

Correlation– Less developed Provinces

Upstreamness vs Economic Development

Upstreamness vs Economic Development

Correlation with GDP per capita: Other cases

Source: Lukin (2019)

A

Conclusions

Temporal Shift

- National upstreamness ↑ sharply → complexified production
- County-level distribution \rightarrow wider dispersion (kernel density)

Spatial Pattern

- High-upstreamness clusters: West of Hu Line & SW China
- Resource-based regions align with expectations
- Economic Impact
 - Overall: Per capita GDP
 Upstreamness
 - Within provinces (poor/wealthy): No uniform correlation
 - \rightarrow Strong inter-provincial trade & specialization
 - \rightarrow Diverges from national trend

Discussion

Research Objective: How does intra-national division of labor positioning shape:

Regional economic development & Value distribution patterns

- →Scrutinizes the "Smiling Curve" theory
- →Novel lens for inter-regional income disparities
- How to explain divergent upstreamness patterns: China vs. Russia vs. US?
 - Industrial Upstreamness vs. Economy-wide Upstreamness
- Next-Phase Research Framework
 - Methodology:Regional input-output analysis
 - Considering domestic trade cost integration

Thanks for listening

Conceptual Framework: What is Upstreamness?

- Upstreamness quantifies how far an industry is, on average, from final demand in the production process
- Upstreamness is an indicator that
 - Measures an economic entity's *position* in the production chain
 - Represents its dependence on earlier stages of production
- Economic Intuition
 - An industry that sells most of its output directly to final consumers (e.g., retail, food services) has *low upstreamness* (close to 1)
 - An industry that sells primarily to other industries (e.g., mining, basic chemicals) has high

upstreamness

