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Abstract 
This study investigates the use of machine learning to enhance the Input-Output (IO) model 

for analyzing economic interdependencies between industries and thus structural changes. 

Traditional IO models face challenges such as time lags and inaccuracies due to the labor-

intensive nature of compiling IO tables. By employing machine learning, specifically Random 

Forest algorithm, this research aims to estimate and forecast economic structures more 

efficiently. Using aggregated OECD annual IO tables and World Bank Development Indicators, 

the study predicts the sector-to-sector production ratios, constructing a 9-by-9 IO structure 

based on 829 socio-economic indicators. The results demonstrate the method's potential, with 

36% of the data points in the tested IO tables achieving relatively accurate predictions that 

have error levels less than ±30%. As Vietnam, an important emerging economy, transitions to 

more renewable energies, a sensitivity analysis of its economic structure, in response to 

varying renewable energy ratios, reveals non-linear effects on sector contributions. Simulation 

of this research suggests that increasing the renewable energy ratio from 15% to 2018’s level 

leads to a decrease of 4.5% in the contribution of Chemical sector to its self-contribution, but 

a further increase of energy ratio to 25% will only decrease the same item by 0.4%. This 

approach shows promise as a cost-effective alternative to traditional IO economic models, 

offering policymakers an additional dimension of analysis to consider. 

 

  



Introduction  
The Input-Output (IO) model is a well-established economic framework used to analyze the 

interdependencies between industries (Thomassin, 2018). Originally developed by Wassily 

Leontief (Leontief, 1936), the model describes how the output of one sector serves as an input 

for another, facilitating a comprehensive understanding of economic flows (Rose and Miernyk, 

1989). National statistics bureaus periodically compile IO tables to support economic analysis 

and policymaking. These tables have been instrumental in various applications, including 

environmental stress accounting that quantifies the environmental impacts of economic 

activities(Leontief, 1970, Zhao et al., 2009, He et al., 2021). They are also used in social 

footprint analysis to assess the social impacts of production and consumption (Wiedmann and 

Lenzen, 2018, Wiedmann et al., 2006) , disaster impact assessment to evaluate the economic 

consequences of natural and man-made disasters (Mendoza-Tinoco et al., 2020, Huang et al., 

2022), and global supply chain studies to understand the complexities of international trade 

and production networks (Haddad et al., 2023). 

Despite its utility, the IO model relies heavily on statistical surveys to compile the necessary IO 

tables, especially the intermediate interindustry 𝑍  matrx, which are prone to time lags, 

inaccuracies, and errors. Typically, national IO tables are updated approximately every three 

to five years, which can result in outdated information and necessitates extrapolation and 

interpolation for more frequent updates (Tukker et al., 2018, Eurostat, 2012). The labor-

intensive nature of compiling these tables further complicates timely revisions. While 

developed countries have established standardized protocols for IO table construction (United 

Nations Statistical Division, 1999), less developed nations often struggle with issues like data 

scarcity (Antille, 1990, Eleish, 1963) and unreliable statistics (Singh, 1972). These challenges 

have driven researchers to seek more cost-effective alternatives for compiling IO tables, aiming 

to enhance both efficiency and accuracy (Lahr, 1993, Leblanc and Queyranne, 1980). 

Alternative approaches employ econometric techniques to forecast changes in economic 

structures by analyzing socio-economic factors (Rodríguez-Pose, 1998) such as education 

levels (Rentería et al., 2016, Cuaresma and Mishra, 2011), population dynamics (Malmberg, 

1994), and labor market trends (Castelló-Climent, 2019). Despite their utility, these methods 

often struggle to accurately capture the complex interlinkages between sectors Complex 

process-based economic models, such as the Computational General Equilibrium (CGE) model, 

attempt to quantify these interdependencies but face significant challenges due to data 

constraints (Adkins et al., 2003). Additionally, CGE models rely on simplified assumptions 

(Zhou and Chen, 2021) and require specialized expertise (An et al., 2023), which can 

compromise their predictive accuracy (Faehn et al., 2020). 

Economists have explored hybrid approaches that integrate socio-economic parameters with 



economic models to address the challenges of capturing sectoral interlinkages (Merciai and 

Schmidt, 2018, Ayres, 1995). However, establishing direct theoretical linkages between these 

parameters and individual economic sectors remains difficult due to current limitations in data 

processing and computational capabilities (Faehn et al., 2020). In response, machine learning 

(ML) has emerged as a promising alternative for analyzing economic structural changes 

(Ghoddusi et al., 2019, Mullainathan and Spiess, 2017). Unlike theory-driven economic models, 

ML methods bypass stringent assumptions and instead detect empirical relationships among 

variables, allowing for the discovery of hidden interdependencies between socio-economic 

factors and economic structures (Vrontos et al., 2021, Guoa et al.). Although ML models do 

not explicitly articulate the underlying economic mechanisms, they facilitate rapid analysis 

within an IO framework, offering a powerful tool for understanding complex economic 

dynamics (He et al., 2025). 

Building on this concept, our research introduces a ML-based method to estimate and predict 

economic interlinkages under IO structure, hence approximating the 𝑍  matrix in a cost-

effective way. This approach aims to provide reliable estimations for missing IO tables and 

forecast structural changes under changing socio-economic conditions. The results 

demonstrate that the ML-based method can fairly predict inter-industry production within an 

IO framework. By using Vietnam as a case study, we show how the model effectively forecasts 

non-linear structural changes in response to variations in renewable energy ratios. Given the 

findings, this research suggests that the ML-based approach is a cost-effective alternative to 

traditional process-based and survey-reliant economic models. It can offer valuable policy 

insights for stakeholders on economic structure estimations and impact assessments amid 

evolving socio-economic conditions. 

Method and Data 
The central philosophy of this research posits that a nation's development follows a unique 

trajectory shaped by socio-economic indicators, which are essential for forecasting economic 

transformations. Socio-economic theories indicate that the relationships between economic 

indicators are complex and non-linear. A notable example is the Environmental Kuznets Curve 

(EKC), which proposes that as an economy expands, environmental degradation initially 

escalates but eventually diminishes once a certain income per capita threshold is surpassed. 

However, like many other economic theories, the EKC is a theoretical construct that has been 

criticized for its oversimplification and is increasingly challenged by recent empirical studies 

(Wang et al., 2024). This highlights the issue that, despite the complexity of non-linear theories, 

uncovering the relationships between socio-economic parameters remains difficult with 

process-based economic modeling. Consequently, there have been limited efforts to 

extrapolate changes in economic structures and to make predictions and estimations based 



on socio-economic indicators. 

To address these challenges, this research employs machine learning techniques to analyze 

socio-economic indicators, enabling the estimation and understanding of economic 

development trajectories without the need for labor-intensive IO surveys and rigid economic 

theories. By leveraging comprehensive quantitative data—such as labor structure, natural 

resources, education levels, and urbanization rates—this approach can determine a country's 

stage of development and predict its economic structure as depicted by the IO table. This 

approach allows researchers to generate rapid estimations of an economy's IO-based structure, 

bypassing the need for traditional consensus surveys. Eventually, the goal of this algorithm is 

to advance the methodological development of IO models, thereby enhancing the 

understanding, estimation, and forecasting of economic structures within the IO framework. 

Data Source 

This study leverages a comprehensive dataset to examine the economic trajectories of various 

countries. The primary data source is the OECD annual IO tables (OECD, 2023), which span 

from 1995 to 2018 and cover 66 countries and economies. These tables provide detailed 

information across 45 economic sectors. However, the original 45-by-45 sector resolution 

necessitates training 2,045 models for each sector-to-sector interaction, posing a significant 

computational challenge to hardware devices. To address this, we aggregated the sectors into 

9 broader sectors, namely Food, Chemical, Mining, Transport, Heavy Industry, Manufacturing, 

EHGW (Electricity, Heating, Gas, and Water), Construction, and Service. It effectively balances 

model complexity with available computational resources. Despite this reduction in 

computational demand, training with the Random Forest algorithm in this study still requires 

over 72 hours to complete a single round (using a system with 64.0GB RAM and an Intel Core 

i9-13900HX 2.2GHz processor). 

In addition to the IO tables, we incorporate socio-economic indicators from the World 

Development Indicators (World Bank, 2024). Initially, the dataset includes 1478 indicators, but 

due to missing data for certain countries and years, we narrowed it down to 154 complete 

indicators. Recognizing the need for a more robust dataset, we supplemented these with 675 

additional parameters derived from the IO tables. These parameters include sectoral value 

added, exports, imports, final demand, and capital formation, among others. Thus, the 

resulting dataset comprises a total of 829 indicators, which are used to train the Random 

Forest model. This model aims to determine the 9x9 intermediate input table 𝑍 =

[

𝑧1,1 ⋯ 𝑧1,9

⋯ ⋯ ⋯
𝑧9,1 ⋯ 𝑧9,9

] , hence providing insights into the economic structural change and 

development trajectory of the countries studied. A complete list of the indicators of World 



Bank Database and the aggregation concordance matrix for OECD IO tables are available in the 

Supplementary Information. 

Random Forest Algorithm  

Random Forest (Breiman, 2001) is an ensemble ML method used for and regression task in 

this study. It operates by constructing a multitude of decision trees during training and 

outputting the mode of the mean prediction of the individual trees. The process begins by 

generating several bootstrap samples from the economic indicators and IO table dataset. For 

each of these samples, a decision tree is constructed. The overall prediction of the Random 

Forest model is achieved by aggregating the predictions of the individual trees, leveraging the 

"wisdom of crowds" to improve accuracy and robustness.  

In this study, the Random Forest regression process can be summarized as the following 

equation (1). 

𝑧𝑖𝑗 = 𝑓(𝑘1, 𝑘2, … , 𝑘𝑛) 

(1) 

In equation (1), 𝑧𝑖𝑗  is the element of the intermediate production 𝑍 table that describes the 

input from sector 𝑖 to produce output in sector 𝑗. 𝑘𝑖 is the 𝑖th social-economic indicator 

provided by the World Bank database. In addition, other elements in the IO tables, such as 

final demand, value added, export/import etc., are also taken out to be considered as a social-

economic indicator in 𝑘𝑖. As explained in the beginning of this section, this study assumes 

that countries are bounded to development trajectory, so that time becomes an invariant in 

this process. If country 𝐴 in year 𝑡1 has exactly the same social-economic parameters as 

country 𝐵 in year 𝑡2, the simulation will conclude that country 𝐴 in year 𝑡1 and country 

𝐵 in year 𝑡2 will have the same intermediate production ratio. Hence, the annual IO tables 

of 66 countries/regions from 1995 to 2018 as given by OECD database provides 1584 data 

points. For this study, there are 81 (9-by-9) elements in the 𝑍 matrix, so 81 Random Forest 

models need to be trained based on the same 829 indicators.  

Concretely, the Random Forest model is based on decision tree algorithm. A decision tree is a 

supervised learning algorithm that splits data into subsets based on feature values to predict 

an output, forming a tree-like model of decisions. Each internal node represents a test on a 

feature, each branch corresponds to an outcome of the test, and each leaf node holds a 

prediction value.  

Let 𝐾  be the input indicator containing 𝑛  features in vector form, 𝑧  be the output 

intermediate production ratio in scalar form. So that the training set containing 𝑚 

observations can be expressed in equation (2) 



𝑆 = {(𝐾1, 𝑧1), (𝐾2, 𝑧2), … , (𝐾𝑚, 𝑧𝑚)}, 𝐾 ∈ ℝ𝑛, 𝑍 ∈ ℝ 

(2) 

For each of the Random Forest model, a bootstrap aggregation, or bagging, is performed by 

randomly sampling on the training dataset 𝑆 to generate bootstrap samples 𝑆(𝑏). From the 

bootstrap samples 𝑆(𝑏) , a regression decision tree 𝑇(𝑏)  is constructed by recursively 

partitioning the feature space. At each node of the regression decision tree 𝑇(𝑏), a random 

subset of the 𝑝 features (𝑝 < 𝑛) is selected. Among the 𝑝 features, the algorithm chooses 

the best split by minimizing the Mean Squared Error (MSE) of the target variable in the 

resulting child node.  

After training 𝐵 trees, the ensemble prediction for a new input 𝐾 is made by averaging the 

predictions from all individual trees as shown in equation (3)  

𝑧𝑖�̂� =
1

𝐵
∑ 𝑇(𝑏)(𝐾)

𝐵

𝑏=1

 

(3) 

Here, 𝑇(𝑏)(𝐾)  is is the predicted output of the 𝑏 -th tree for input 𝐾 , and 𝑧𝑖�̂�  is the 

predicted input from sector 𝑖 to produce output in sector 𝑗 in the 𝑍 matrix of the IO table. 

Scenario Setting 

In this study, Vietnam was chosen as a case study to demonstrate the application of our 

method for deriving policy implications. Vietnam is an ideal case due to its rapid economic 

growth and increasing emphasis on sustainable development. The country is at a critical 

juncture where it is essential to balance economic expansion with environmental sustainability 

from an early stage of development. Vietnam has committed to achieving net-zero emissions 

by 2050 through a swift transition to renewable energy generation. With a substantial 

renewable energy potential of 1,000 GW, Vietnam significantly surpasses other developing 

nations in the region (Deffarges et al., 2023). Therefore, this study specifically varied the 

development indicator "Renewable Energy Ratio" to explore its impact on Vietnam's economic 

structure, as reflected by the estimated changes to the IO table. With reference to equation 

(1), the sensitivity analysis can be described by equation (4) as follows. 

∆𝑧𝑖𝑗 = 𝑓(𝑘1, 𝑘2, … , ∆𝑘𝑙, … , 𝑘𝑛) 

(4) 

In equation (4), only the investigated indicator ∆𝑘𝑙, in this case "Renewable Energy Ratio", is 

varied to show how each of the cells in the intermediate production matrix will change, show 



by ∆𝑧𝑖𝑗 in equation (4). 

To ensure the accuracy and consistency of the estimated IO table, we applied the RAS 

algorithm, a well-established method for balancing IO tables (Jackson and and Murray, 2004). 

This step is crucial for maintaining the balancing relationships dictated by the IO model. By 

examining these scenarios, we aim to provide insights into how shifts toward renewable 

energy can influence sectoral interactions and overall economic dynamics in Vietnam. 

Additionally, the Vietnam scenario demonstrates how the proposed Random Forest algorithm, 

combined with IO modeling, can offer real-world policy implications in development analysis. 

Result 

Effectiveness Analysis 

This research considers a prediction model to be relatively accurate if the prediction falls 

within 70% to 130% of the true value, or has an error level of ±30%. Figure 1 illustrates the 

effectiveness of the proposed framework in constructing an IO intermediate production matrix. 

At a 68% confidence interval, 15.5% to 59.0% of the predictions for the 81 cells are relatively 

accurate. 

Among production sectors, the Service sector achieves the highest average accuracy rate at 

60.4%, while the Construction sector has the lowest at 21.6%. This may be because the Service 

sector, which relies more on labor input of educated population, is closely linked to socio-

economic factors like education level that are recorded in more detail by the World Bank 

database used in this research. In contrast, the Construction sector involves more informal 

economic activities that are less accurately represented in socio-economic indicators, such as 

catering and transportation provided to construction workers. Without effective socio-

economic indicators, the forecast capability of the Random Forest algorithm is thus 

deteriorated, shown by the less accurate predictions by the Construction sector. 

As for consumption sectors, the Manufacturing sector shows the highest average accuracy rate 

at 54.0%, whereas the Mining sector has the lowest at 26.0%. The Manufacturing sector's 

reliance on upstream consumption and its well-documented records submitted to statistical 

bureaus strengthen its relationship with other production sectors, thus improving the 

prediction accuracy rate. Conversely, the limited upstream connections to the Mining sector 

weaken this relationship, reducing the relative accuracy rate. 



 

Figure 1 The distribution of relatively accurate predictions for the 9-by-9 intermediate production matrix in 

the training set. This research considers the prediction to be relatively accurate if the predicted value falls 

within the range of 70% to 130% of the true value, or an error level of ±30%. The color scale represents the 

number of relatively accurate predictions of the respective cells in the intermediate production matrix in 

percentage.  

To evaluate the capability of the trained models in predicting unseen data, the training was 

repeated with the last seven countries (Sweden, Thailand, Tunisia, Turkey, USA, Vietnam, and 

South Africa) excluded from the original 66 countries, forming a verification set. This left 59 

countries/regions for training in this round. Figure 2 illustrates the effectiveness of the trained 

models on the seven countries in the verification set. On average, these countries 

demonstrated a relative accuracy rate of 36% across the 81 trained models. Notably, Sweden 

exhibited the highest relative accuracy rate at 53% when reconstructing the intermediate 

production matrix. This suggests that the socio-economic indicators provided for Sweden in 

this study are more closely linked to its IO structure, resulting in better modeling accuracy. The 

variation in accuracy across countries may also reflect differing strengths in the relationship 

between economic structures and the socio-economic indicators used in the training. 



 

Figure 2 The distribution of relatively accurate predictions for the 7 countries in the verification set. The height 

of the bars represents the relative accuracy for the corresponding country in the intermediate production 

matrix in percentages. 

 

Case Study 

As a vibrant emerging economy under rapid transition, Vietnam was selected as a case study 

to demonstrate the application of the proposed method in economic analysis. An uncertainty 

analysis was conducted to validate the method's effectiveness in accurately reconstructing the 

economic structure depicted by the intermediate IO matrix. In this training round, all 

observations in the dataset were used to train the models, except for Vietnam's IO table from 

2018. By comparing the prediction results for Vietnam, this case study aims to further validate 

the effectiveness of the Random Forest algorithm specifically for Vietnam. 

As shown in Figure 3 (a), when reconstructing the IO structure of Vietnam in 2017 using 

economic parameters that are included in the training set, the method designed in this 

research is capable to rather accurately reproduce the correct intermediate production ratio 

within an error range of -17.4% to 60.2% (95% confidence interval) for all 81 locations in the 

intermediate production matrix. If given a verification set of economic development indicators 

for the year 2018, as shown in Figure 3 (b), the uncertainty performance of the method 

developed deteriorates to an error range of -38.4% to +216.1% (95% confidence level). In 

addition, the accuracy of predictions for different intermediate production cells are distributed 



differently. Specifically, accuracy for input to Manufacturing sector and output from Chemical 

sector are relatively higher than other sectors. The reason may be that the social-economic 

indicators used in this training are more linked to these two sectors, thus yielding higher 

accuracy in the prediction made by the model.  

 

Figure 3 Effectiveness of the method in reconstructing the 9-by-9 intermediate production matrix of Vietnam 

for the (a) training year of 2017 and (b) verification year of 2018. The percentages in each cell represents the 



ratio of the reconstructed data to real data. The blue and red colors show the extent of negative and positive 

variations of the reconstructed data from the real data respectively.  

As a demonstration of the potential of this model as a viable alternative to complex economic 

models, this research has conducted a sensitivity analysis for economic structure change given 

changes in renewable energy ratio for Vietnam. It clearly shows the complex and nonlinear 

change of economic structures given changes in the economic indicators of a country. 

The simulation shown in Figure 4 suggests a nonlinear pattern of economic structure change 

given an increased ratio of renewable energy. For instance, it shows that when the renewable 

energy ratio increased from 15% to the level of 2018 (21.8%), the contribution of Chemical 

sector to itself dropped tremendously by 4.5%, while the contribution of Chemical sector to 

EHGW increased by 0.4%. It reveals that at this stage of development, Vietnam’s chemical 

industries, more importantly the petroleum industry, will tremendously improve its efficiency 

by reducing contribution from petroleum industry and switch its intermediate demand to 

cleaner energy source of electricity and gas. On the other hand, if the renewable energy ratio 

is further increased to a hypothetical level of 25% with all other economic parameters 

unchanged, the decrease in Chemical sectors’ contribution to itself will be reduced to only 

0.4%, although still the most significant change among all intermediate inter-industry 

contributions. It reveals the diminishing improvement of chemical industry’s efficiency given 

increased renewable energy ratio. If the ratio of renewable energy further increased to 30%, 

the changes of chemical sector to all the other sectors are not as large and limited to only less 

than 0.1%. On the contrary, contribution from the Mining sector to EHGW sector will 

significantly increase to 0.5%, suggesting the development of Vietnam will be faced with a 

bottle neck in the extraction of raw materials, which leads to higher cost and increased 

intermediate contribution in the mining sector to clean energy generation.  



 



Figure 4 The percentage change in each cell of the intermediate production matrix of Vietnam, given the 

renewable energy ratio of Vietnam changes from (a) 15% to 21.8% (actual value in 2018), (b) 21.8% (actual value 

in 2018) to 25%, and (c) 25% to 30%. 

Conclusion 
In this study, we demonstrated the potential of leveraging machine learning, specifically the 

Random Forest algorithm, to predict IO structures effectively. Our findings indicate that this 

approach can achieve varying levels of accuracy across different sectors and countries, with 

the service sector showing a notable accuracy rate of 44%. The case study on Vietnam further 

highlighted the model's capability to simulate economic structure changes in response to shifts 

in renewable energy ratios, revealing complex, nonlinear patterns of sectoral 

interdependencies.  

The integration of machine learning into IO modeling offers significant advantages over 

traditional methods, particularly in terms of cost-effectiveness and the ability to uncover 

complex relationships without relying on intricate process-based economic models. This 

approach shows promise for broader applications in economic forecasting, providing a viable 

alternative to more complex models in analyzing changes in economic structure. It offers an 

efficient tool for assessing policy sensitivity. 

However, the study also faced challenges, primarily related to computational constraints and 

data availability. The limited computational capacity of the research team’s devices restricted 

the inclusion of more parameters, which could enhance model accuracy. Additionally, the 

quality and completeness of available data remain critical factors influencing the model's 

performance. In the World Bank database used for Random Forest training, many datasets 

were incomplete for the period from 1995 to 2018, leading to the exclusion of valuable 

indicators such as healthcare metrics and development indices. Future research should focus 

on overcoming these limitations by incorporating additional parameters from diverse sources 

and exploring the model's applicability. There is also potential for integrating this machine 

learning approach with other economic modeling techniques to further enhance its predictive 

capabilities and add explanatory features to the analysis of the model. 

Overall, this research serves as a first attempt to the cross-over between IO modeling and 

machine learning techniques. We encourage further exploration and development of machine 

learning methodologies to advance economic modeling and forecasting. 
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