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Abstract 

 

Traditional input-output models linking economic activity to water resources 

often rely on economic units of analysis, overlooking the geographical and 

hydrological relevance of river basins—the fundamental units for water-

related assessments. This study evaluates the balance between water 

demand and supply across five local labor systems (LLS) in the upper Arno 

River basin, Tuscany, Italy. Water supply is modeled using the Soil and Water 

Assessment Tool (SWAT), while water demand—blue (from surface and 

groundwater), green (from soil moisture), and gray (for pollutant dilution)—

is estimated through a multiregional input-output hydro-economic model 

(MRIO) integrated with a water quality mixing model. Spatial harmonization 

is achieved by aligning sub-basins with their corresponding LLS, enabling 

comprehensive analysis. The integrated modeling framework uncovers two 

key endogenous effects: (i) adjustments in agricultural water withdrawal 

intensity based on green water availability and (ii) changes in industrial gray 

water requirements due to variations in runoff and groundwater recharge. 

Furthermore, the model characterizes green water supply, offering a more 

precise depiction of agricultural water demand dynamics compared to models 

lacking physical hydrological integration. Results are synthesized into 

multiple scarcity indicators to assess water scarcity at the LLS level, 

incorporating diverse demand approaches (withdrawals, net demand, 

extended demand) and supply perspectives (natural ecological supply, 

feasible supply). This approach highlights the importance of integrating 

physical and economic models to address water scarcity and sustainability 

challenges effectively. 
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1 INTRODUCTION 

 

Water scarcity has been characterized at different territorial scales. From an 

economic perspective, national, regional, or local scales are typically used. In 

contrast, hydrology relies on more appropriate units of analysis such as 

basins or sub-basins. Although river basins are best suited to characterize 

hydrological processes, the disaggregation of productive activities generally 

does not align with these hydrological units (Ridoutt et al., 2018; Wichelns, 

2017). 

 

This mismatch between scales and units of analysis is particularly relevant in 

the assessment of interconnected economic systems. Unlike hydro-economic 

studies focused on individual basins, such assessments incorporate data from 

the productive system across an entire region, country, or even globally, 

disaggregated into local economies or regions (Duarte et al., 2016; Arto et 

al., 2016; Lenzen et al., 2013; Feng et al., 2011; Sturla et al., 2023). 

Determining economic variables for each basin within a region, and 

subsequently quantifying interregional flows of goods and services, would be 

highly complex. Moreover, countries do not disaggregate their national 

accounts based on hydrological boundaries. 

 

Therefore, the most feasible and effective approach is to adjust the 

hydrological scale to match the economic scale. This allows for the 

representation of variables such as surface and groundwater supply in a 

manner that is consistent with economic data. 

 

The present study focuses on the Tuscany region of Italy, which constitutes 

an interesting case study. At the regional level, Tuscany does not exhibit 

significant water scarcity, either in average conditions (Rocchi et al., 2024) 

or when exposed to hydrological variability (Sturla and Rocchi, 2023). 

However, due to spatial heterogeneity in both climate and productive 

structure, local water scarcity problems are significant. 

 

The issue of territorial scale in Tuscany's water scarcity was addressed by 

Rocchi and Sturla (2022). That study employed a spatial stochastic 

hydrological model that estimated hydrological components for each Local 

Labour System (LLS) in Tuscany and generated synthetic series over N years. 

Results indicated that 14 out of 49 LLSs experienced significant water 

scarcity, based on the Extended Water Exploitation Index (EWEI) and 

endogenous scarcity thresholds (STg), for both blue water (surface and 

groundwater) and grey water (water required to dilute pollutants from 

effluents). However, the study faced certain limitations, including the inability 

to estimate surface water supply in natural conditions due to lack of data, the 

intrinsic characteristics of the model which do not represent physical 

hydrological processes, and the fact that the hydrological unit of analysis did 

not correspond to a basin or sub-basin. Furthermore, the model did not 

characterize green water (soil moisture) availability, thus precluding an 

assessment of green water scarcity. 
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To address these limitations, the present study adopts a more realistic 

approach, using a physically based hydrological model (SWAT) integrated 

with a multiregional input–output (MRIO) model. The study focuses on five 

LLSs located in the upper Arno River basin. Hydrological analysis is conducted 

at the sub-basin level and aggregated to the LLS scale, thereby aligning the 

hydrological and economic scales. 

 

The concrete benefits of this approach include: 

 

• Greater accuracy in estimating hydrological components: precipitation, 

evapotranspiration, surface runoff, groundwater recharge, and soil 

moisture. 

• The estimation of surface runoff under natural conditions allows for the 

assessment of natural water availability to improve the accuracy of 

scarcity indicators and enhance the grey water estimation through the 

mixing model. 

• Soil moisture enables the estimation of green water supply for 

agriculture and better simulation of increased surface and groundwater 

withdrawals during deficit years. 

 

The proposed model is integrated; hydrological and economic calculations are 

not performed independently. Hydrological components influence the 

determination of water use intensity coefficients in agriculture (which 

substitutes green water with blue water), and both economic and hydrological 

calculations are used to determine grey water through a mixing model. The 

analysis incorporates climatic variability (2014–2020) and evaluates its 

impact on the 2017 productive system. 

 

The study's main methodological innovations in the literature are: (i) aligning 

the hydrological system to the economic system; and (ii) developing a green 

water scarcity indicator. 

 

The calculations enable the estimation and comparison of five scarcity 

indicators across the five LLSs analyzed, allowing for an integrated 

characterization of water scarcity. The indicators used are: 

 

• Water exploitation index (WEI): The ratio between blue water 

withdrawals natural to mean natural ecological supply. Developed by 

European Environmental Agency (2020). 

• Water exploitation index plus (WEI+): The ratio between blue water net 

demand to mean natural ecological supply. Developed by Faergemann 

(2012) and European Environmental Agency (2020). 

• Natural extended water exploitation index (EWEI*): The ratio between 

blue and gray water extended demand to natural ecological supply. 

Developed in this study. 

• Extended water exploitation index (EWEI): The ratio between blue and 

gray water extended demand to feasible supply. Developed by Rocchi 

et al. (2024) 
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• Green water scarcity index(GWSI): The ratio between green water 

withdrawals to soil moisture availability (for agriculture in the irrigation 

period). Developed in this study. 
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2 METHODS AND DATA 

 

2.1 Methodology overview 

 

Figure 1 presents the schematic of the methodology used in this study. The 

SWAT hydrological model is used to generate the natural supply of blue water 

(surface and groundwater) and green water (soil moisture) in each LLS. In 

parallel, the MRIO model allows for the estimation of extended water demand 

in each LLS, based on water use intensity coefficients and the MRIO table for 

Tuscany. The hydrological and economic components are linked through: (i) 

the mixing model used to determine grey water intensity coefficients, which 

requires information on water supply and demand, as well as water quality 

parameters; and (ii) the agricultural water use coefficients, which depend on 

hydrological variability, as this determines the substitution of green water 

with blue water. 

 

Based on the extended demand and the natural supply, the various scarcity 

indicators used to characterize water scarcity in the analyzed local economies 

can be constructed. 

 

Figure 1. Schematic representation of the methodology 

 
Source: Own elaboration 

 

2.2 Study area 

 

The study area is located in the upper Arno River basin and includes the LLS 

of Arezzo, Bibbiena, Cortona, Montepulciano, and Sinalunga. Figure 2 

illustrates the geographical location of these LLS. 
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Figure 2. Study area (5 LLS) 

 
Source: Own elaboration 

 

 

2.3 Hydrology (SWAT Model) 

 

To characterize water supply in the local economies considered in this study, 

the SWAT (Soil and Water Assessment Tool) hydrological model was 

employed. This model enables the spatially explicit estimation of key 

components of the hydrological cycle at the sub-basin scale. Specifically, it 

was used to estimate the natural supply of surface water, groundwater 

recharge, and soil moisture—the latter serving as a proxy for green water 

availability for agricultural use. The simulation was conducted on a monthly 

scale and subsequently aggregated to an annual scale for integration with the 

economic model. SWAT requires a comprehensive set of input data, including 

time series of precipitation, minimum and maximum temperature, solar 

radiation, relative humidity, and wind speed. In addition, detailed information 

on topography (digital elevation model), land use, vegetation cover types, 

and soil properties was incorporated for each sub-basin within the LLS. Model 

calibration was carried out using observed streamflow data from hydrometric 

stations located at strategic points in the upper Arno River basin. This 

calibration process allowed for the adjustment of key model parameters to 

realistically represent runoff and recharge processes under local conditions. 

 

In addition to the blue water supply generated within the sub-basins, the 

model also accounts for transfers from the Montedoglio reservoir, located 

outside the study area. 

 

Figure 3 presents the sub-basins associated with each of the five LLS. 
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Figure 3. Sub-basins (5 LLS) 

 
Source: Own elaboration 

 

2.4 MRIO hydro-economic model 

 

The environmentally extended multiregional input-output model (Miller and 

Blair, 2009) allows to calculate the total environmental resource (E) used by 

an economic system with n subregions and m industries: 

 

𝐸 = 𝐶𝑇 ∙ 𝑥 
 

(1) 

 

Where 𝑥 is the (mn x 1)  vector of outputs by economic sector and subregion 

and C is the (mn x 1) vector of environmental resource use intensities. T 

denotes the transpose. 

 

The vector 𝑥 can be expressed in function of the technical coefficients (mn x 

mn)  matrix 𝐴 and the (mn x 1) vector  y  of total final demand 

 

𝑥 = (𝐼 − 𝐴)−1 ∙ 𝑦 
 

(2) 

 

Defining 𝐿 = (𝐼 − 𝐴)−1 as the multiregional Leontief inverse (mn x mn)  

matrix,  
 

𝐸 = 𝐶𝑇 ∙ 𝐿 ∙ 𝑦 
 

(1) 

For the purposes of this study, the environmental resource is water. The 

extended water demand is defined as withdrawals (blue and green water) 

minus discharges plus the water requirements for dilution (grey water). 

 

The extended demand of water (n x 1) vector for each subregion (𝑒𝑘
𝑠) could 

be expressed as: 
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𝑒𝑘
𝑠 = (𝑓𝑘

�̂� − 𝑟𝑘
�̂� + 𝑤𝑘

�̂�) ∙ 𝐿𝑠 ∙ 𝑦 (4) 

 

Where the 𝐿𝑠 (m x mn) matrix corresponds to the Leontief inverse matrix 

blocks associated with production in the subregion s , 𝑦 (mn x 1)  vector  is 
the final demand and 𝑓𝑘

𝑠, 𝑟𝑘
𝑠 and correspond to the (m x 1) vectors (in m3/€) 

of intensity coefficients for withdrawals, discharges and water for dilution, 

respectively, by water body k (groundwater, surface water and soil moisture) 

in subregion s.  The hat symbol indicates the diagonalization of the vector.  

 

When hydrologic variability is considered, the water use coefficients change 

according to the components of the hydrologic cycle. Let us first define the 

water extended demand for the subregion s associated with water body k, 

industry i and year t (for notation simplicity we use 𝑥𝑠 instead of 𝐿𝑠𝑦): 

 

𝑒𝑘,𝑖,𝑡
𝑠 = (𝑓𝑘,𝑖,𝑡

𝑠 −  𝑟𝑘,𝑖,𝑡
𝑠 + 𝑤𝑘,𝑖,𝑡

𝑠 ) ∙ 𝑥𝑖
𝑠 (5) 

 

Withdrawal coefficients will change for agricultural sectors, due to variations 

in soil moisture availability, which will imply higher withdrawals from surface 

and groundwater bodies when demand for green water exceeds supply for 

agriculture. Discharge coefficients also change because withdrawing water 

from surface water and groundwater involves considering irrigation losses. 

The dilution water requirement coefficients will change for all sectors 

discharging polluted water, depending on runoff, groundwater recharge, 

which define the concentration of pollutant in the receiving bodies. The latter 

coefficients depend indirectly on soil moisture due to their estimation as a 

function of discharge volume. 

 

The above will be explained and formalized in later sections, however, a 

general scheme for extended demand dependence in hydrology is defined 

here. 

 

Equations (6), (7) and (8) present the water use coefficients, each of which 

can be written as a function of its deterministic value (Rocchi and Sturla, 

2021) plus time-varying term, which depends on hydrological components: 

 

𝑓𝑘,𝑖,𝑡
𝑠 = 𝑓𝑘,𝑖

𝑠 + 𝐹𝑘,𝑖,𝑡
𝑠 (𝑆𝑡

𝑠) (6) 

 

𝑟𝑘,𝑖,𝑡
𝑠 = 𝑟𝑘,𝑖

𝑠 + 𝑅𝑘,𝑖,𝑡
𝑠  (𝑆𝑡

𝑠) (7) 

 

𝑤𝑘,𝑖,𝑡
𝑠 = 𝑤𝑘,𝑖

𝑠 + 𝐻𝑘,𝑖,𝑡
𝑠 [𝐼𝑡

𝑠, 𝑅𝑡
𝑠, 𝑅𝑘,𝑖,𝑡

𝑠 (𝑆𝑡
𝑠)] (8) 

 

 

Where 𝐼𝑡
𝑠, 𝑅𝑡

𝑠 and 𝑆𝑡
𝑠 are the groundwater recharge, the runoff and the soil 

moisture, respectively, in subregion s for year t, obtained with the 

hydrological model.  
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Using equations (6) to (8) it is possible to write a general form to the extend 

demand associated with the water body k, the industry i and the year t. 

 

𝑒𝑘,𝑖,𝑡
𝑠 = 𝑒𝑘,𝑖

𝑠 + [𝐹𝑘,𝑖,𝑡
𝑠 (𝑆𝑡

𝑠) + 𝑅𝑘,𝑖,𝑡
𝑠  (𝑆𝑡

𝑠) + 𝐻𝑘,𝑖,𝑡[𝐼𝑡
𝑠, 𝑅𝑡

𝑠, 𝑅𝑘,𝑖,𝑡(𝑆𝑡
𝑠)]] ∙ 𝑥𝑖

𝑠 (9) 

 

 

Note that 𝐹𝑘,𝑖,𝑡
𝑠 (𝑆𝑡

𝑠) = 0 and 𝑅𝑘,𝑖,𝑡
𝑠  (𝑆𝑡

𝑠) = 0 for non-agricultural sectors, and 

𝐻𝑘,𝑖,𝑡[𝐼𝑡
𝑠, 𝑅𝑡

𝑠, 𝑅𝑘,𝑖,𝑡(𝑆𝑡
𝑠)] = 0 for non-discharging sectors.  

 

Based on the above, it is possible to define the water demand considering 

only withdrawals (𝑞𝑘,𝑖,𝑡
𝑠 ) and the net demand, corresponding to withdrawals 

minus discharges (𝑧𝑘,𝑖,𝑡
𝑠 ). These definitions will be of importance for the 

calculation of scarcity indicators. 

 

𝑞𝑘,𝑖,𝑡
𝑠 = [𝑓𝑘,𝑖

𝑠 + 𝐹𝑘,𝑖,𝑡
𝑠 (𝑆𝑡

𝑠)] ∙ 𝑥𝑖
𝑠 (10) 

 

𝑧𝑘,𝑖,𝑡
𝑠 = [𝑓𝑘,𝑖

𝑠 + 𝑟𝑘,𝑖
𝑠 + 𝐹𝑘,𝑖,𝑡

𝑠 (𝑆𝑡
𝑠) + 𝑅𝑘,𝑖,𝑡

𝑠  (𝑆𝑡
𝑠)] ∙ 𝑥𝑖

𝑠 (11) 

 

2.5 Agriculture  

 

The withdrawal and discharge deterministic coefficients of the agricultural 

sectors can be broken down into the part requiring irrigation and the part 

associated with livestock (Sturla and Rocchi, 2022; Sturla and Rocchi, 2024): 

 

𝑓𝑘,𝑖
𝑠 = 𝑓𝑘,𝑖

𝑠,𝑖𝑟𝑟 + 𝑓𝑘,𝑖
𝑠,𝑙𝑖𝑣  (14) 

 

𝑟𝑘,𝑖
𝑠 = 𝑟𝑘,𝑖

𝑠,𝑖𝑟𝑟 + 𝑟𝑘,𝑖
𝑠,𝑙𝑖𝑣  (15) 

 

In this section, subscript i refers only to agricultural sectors. 

 

The following subsections details the methodology used to modify the water 

withdrawal and discharge coefficients for a year, depending on precipitation 

and evapotranspiration. 

 

Let define 𝑇𝑖,𝑡
𝑠

 as the  additional groundwater and surface water withdrawals 

by the agricultural sector 𝑖, subregion s, year 𝑡, due to changes in soil 

moisture (𝑆𝑀𝑠). Then, 

 

𝑇𝑖,𝑡
𝑠 = {

(𝑓
𝑠𝑚,𝑖
𝑠,𝑖𝑟𝑟 ∙ 𝑥𝑖

𝑠 − 𝑆𝑀𝑡
𝑠
) ∙ 𝛾     𝑖𝑓  𝑆𝑡

𝑠 < 𝑓
ℎ𝑐,𝑖
𝑖𝑟𝑟 ∙ 𝑥𝑖

𝑠   

         0                               𝑖𝑓  𝑆𝑡
𝑠 ≥ 𝑓

ℎ𝑐,𝑖
𝑖𝑟𝑟 ∙ 𝑥𝑖

𝑠
                 

(17) 

 

where, 
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𝛾𝑖
𝑠 =

1

1 − 𝜌𝑖
𝑠 

(18) 

 

The parameter 𝜌𝑖
𝑠 corresponds to the losses associated with the irrigation 

process in region s and agricultural sector i. When irrigation is used to supply 

agricultural requirements, an additional water withdrawal due to irrigation 

efficiency must be considered. 

 

The term 𝑓ℎ𝑐,𝑖
𝑖𝑟𝑟 ∙ 𝑥𝑖

𝑠 corresponds to the water withdrawal from soil moisture for 

the average year (deterministic case). 

 

To disaggregate the need for additional irrigation between groundwater and 

surface water, consider the following parameters: 

 

𝛿𝑖
𝑠: proportion of groundwater irrigation in sector i of subregion s 

𝜂𝑖
𝑠: proportion of surface water irrigation in sector i of subregion s 

 

where, 

𝛿𝑖
𝑠 =

𝑓𝑔𝑤,𝑖
𝑠,𝑖𝑟𝑟

𝑓𝑔𝑤,𝑖
𝑠,𝑖𝑟𝑟 + 𝑓𝑠𝑤,𝑖

𝑠,𝑖𝑟𝑟
 

(19) 

 

𝜂𝑖
𝑠 =

𝑓𝑠𝑤,𝑖
𝑠,𝑖𝑟𝑟

𝑓𝑔𝑤,𝑖
𝑠,𝑖𝑟𝑟 + 𝑓𝑠𝑤,𝑖

𝑠,𝑖𝑟𝑟
 

(20) 

 

Then, 𝑇𝑖,𝑔𝑤,𝑡
𝑠  and 𝑇𝑖,𝑠𝑤,𝑡

𝑠  correspond to the increase in the withdrawals of 

groundwater and surface water in sector 𝑖 for year 𝑡, respectively, due to the 

eventual decrease in precipitation: 

 

𝑇𝑖,𝑔𝑤,𝑡
𝑠 = {

𝛿𝑖
𝑠 ∙  (𝑓𝑠𝑚,𝑖

𝑠,𝑖𝑟𝑟 ∙ 𝑥𝑖
𝑠 − 𝑆𝑀𝑡

𝑠) ∙ 𝛾𝑖
𝑠           𝑖𝑓  𝑆𝑡

𝑠 < 𝑓ℎ𝑐,𝑖
𝑖𝑟𝑟 ∙ 𝑥𝑖

𝑠

  0                                             𝑖𝑓  𝑆𝑡
𝑠 ≥ 𝑓ℎ𝑐,𝑖

𝑖𝑟𝑟 ∙ 𝑥𝑖
𝑠 

                   
(21) 

 

𝑇𝑖,𝑠𝑤,𝑡
𝑠 = {

𝜂𝑖
𝑠 ∙  (𝑓𝑠𝑚,𝑖

𝑠,𝑖𝑟𝑟 ∙ 𝑥𝑖
𝑠 − 𝑆𝑀𝑡

𝑠) ∙ 𝛾𝑖
𝑠           𝑖𝑓  𝑆𝑡

𝑠 < 𝑓ℎ𝑐,𝑖
𝑖𝑟𝑟 ∙ 𝑥𝑖

𝑠

             0                                                 𝑖𝑓  𝑆𝑡
𝑠 ≥ 𝑓ℎ𝑐,𝑖

𝑖𝑟𝑟 ∙ 𝑥𝑖
𝑠
                  

(22) 

 

 

Adding the effect of precipitation (equations (21) and (22)) and 

evapotranspiration (equations (25) and (26)), and dividing by 𝑥𝑖, yields the 

stochastic component of the withdrawal coefficient for groundwater and 

surface water in agricultural sectors:  

 

 

𝐹𝑔𝑤,𝑖,𝑡
𝑠 (𝑆𝑡

𝑠) = {

𝛿𝑖
𝑠 ∙  (𝑓𝑠𝑚,𝑖

𝑠,𝑖𝑟𝑟 ∙ 𝑥𝑖
𝑠 − 𝑆𝑀𝑡

𝑠) ∙ 𝛾𝑖
𝑠

𝑥𝑖
𝑠        𝑖𝑓  𝑆𝑡

𝑠 < 𝑓ℎ𝑐,𝑖
𝑖𝑟𝑟 ∙ 𝑥𝑖

𝑠

                       0                                      𝑖𝑓  𝑆𝑡
𝑠 ≥ 𝑓ℎ𝑐,𝑖

𝑖𝑟𝑟 ∙ 𝑥𝑖
𝑠

    

 

(27) 
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𝐹𝑠𝑤,𝑖,𝑡
𝑠 (𝑆𝑡

𝑠) = {

𝜂𝑖
𝑠 ∙  (𝑓𝑠𝑚,𝑖

𝑠,𝑖𝑟𝑟 ∙ 𝑥𝑖
𝑠 − 𝑆𝑀𝑡

𝑠) ∙ 𝛾𝑖
𝑠

𝑥𝑖
𝑠        𝑖𝑓  𝑆𝑡

𝑠 < 𝑓ℎ𝑐,𝑖
𝑖𝑟𝑟 ∙ 𝑥𝑖

𝑠 

                         0                                   𝑖𝑓  𝑆𝑡
𝑠 ≥ 𝑓ℎ𝑐,𝑖

𝑖𝑟𝑟 ∙ 𝑥𝑖
𝑠

  

 

(28) 

 

 

For the withdrawal coefficient associated with the hydrologic cycle, its 

stochastic component (negative) is: 

 

𝐹𝑠𝑚,𝑖,𝑡
𝑠 (𝑆𝑡

𝑠) = {

𝑆𝑀𝑡
𝑠 −  𝑓𝑠𝑚,𝑖

𝑠,𝑖𝑟𝑟 ∙ 𝑥𝑖
𝑠

𝑥𝑖
𝑠      𝑖𝑓  𝑆𝑡

𝑠 < 𝑓ℎ𝑐,𝑖
𝑖𝑟𝑟 ∙ 𝑥𝑖

𝑠

                  0                      𝑖𝑓  𝑆𝑡
𝑠 ≥ 𝑓ℎ𝑐,𝑖

𝑖𝑟𝑟 ∙ 𝑥𝑖
𝑠 

        

     

 

(29) 

 

In this work it is assumed that discharges from the agricultural sector are 

entirely to groundwater. Considering 𝛼𝑖
𝑠 as the proportion of the discharged 

water with respect to the groundwater and surface water withdrawals for the 

agricultural sector i, it is obtained that the additional discharges due to 

hydrologic variability are: 

 

𝑅𝑠𝑚,𝑖,𝑡
𝑠 (𝑆𝑡

𝑠) = [𝐹𝑔𝑤,𝑖,𝑡
𝑠 (𝑆𝑡

𝑠) + 𝐹𝑠𝑤,𝑖,𝑡
𝑠 (𝑆𝑡

𝑠)] ∙ 𝛼𝑖
𝑠 (30) 

 

𝑅𝑠𝑚,𝑖
𝑠 (𝑆𝑡

𝑠) = 0 (31) 

where,  

𝛼𝑖
𝑠 =

𝑟𝑔𝑤,𝑖
𝑠,𝑖𝑟𝑟

𝑓
𝑔𝑤,𝑖
𝑠,𝑖𝑟𝑟 + 𝑓

𝑠𝑤,𝑖
𝑠,𝑖𝑟𝑟

 
(32) 

 

Since hydrologic variability influences only the withdrawal and discharge 

coefficients of the agricultural sectors, the above equations are sufficient to 

characterize equations (7) and (8) of the input-output model. 

 

Note that parameters (𝛿𝑖
𝑠, 𝜂𝑖

𝑠, 𝛼𝑖
𝑠) are all defined based on the average 

hydrological condition, that is, for the deterministic situation. It is assumed 

an irrigation losses in groundwater and surface water equal to 𝜌𝑖
𝑠 = 30%, 

obtaining 𝛾𝑖
𝑠 = 1.42 , for all agricultural sectors and subregions. 

 

 

2.6 Water for dilution 

 

The deterministic coefficient 𝑤𝑘,𝑖
𝑠  of equation (33) was calculated by Rocchi et 

al. (2024) with a mixing model base on a mass balance of COD concentration 

with intermediate chemical reaction, improving the previous versions (Xie, 

1996; Guan and Hubacek, 2008).  
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The 𝑤𝑘,𝑖,𝑡
𝑠  of equation (33), for this study, is calculated based on the same 

model, but considering time dependence and two endogenous effects: 

 

● Discharges volumes from the agricultural sector depend on 

precipitation (𝑃𝑡) and evapotranspiration (𝐸𝑡), as discussed in the 

preceding section.  

 

● The COD concentration in receiving water bodies depends on 

groundwater recharge (𝐼𝑡) and runoff (𝑅𝑡). 
 

The coefficients of water requirements for dilution by water body k and 

industry I for the year t, is expressed as: 

 

𝑤𝑘,𝑖,𝑡
𝑠 =

𝑢𝑘,𝑖,𝑡
𝑠

𝑥𝑖
𝑠  

(33) 

 

Where, 𝑢𝑘,𝑖,𝑡
𝑠  (m3/year) is the water for dilution, which is calculated with the 

following mixing model: 

 

𝑢𝑘,𝑖,𝑡
𝑠 =

1

𝑘1𝑘 ∙ 𝑐𝑠𝑘,𝑡
𝑠 − 𝑐0𝑘,𝑡

𝑠 [𝑟𝑘,𝑖,𝑡
𝑠 ∙  𝑥𝑖

𝑠 ∙ (𝑘2𝑘 ∙ 𝑐𝑝𝑘,𝑖,𝑡
𝑠 −  𝑐𝑠𝑘,𝑡)] 

(34) 

 

where, 

 

𝑘1𝑘
  : total reaction rate of pollutants after entering the water body k 

𝑘2𝑘
 : pollution purification rate before entering the water body k 

𝑟𝑘,𝑖,𝑡
𝑠 ∙  𝑥𝑖

𝑠 : 
discharges into the water body k associated with economic sector i 

and subregion s, for year t 

𝑐𝑝𝑘,𝑖,𝑡
𝑠  : 

COD concentration in the discharges to the water body k associated 

with economic sector i and subregion s 

𝑐𝑠𝑘,𝑡
𝑠  : 

Standard COD concentration in water body k and subregion s for year 

t 

𝑐0𝑘,𝑡
𝑠  : COD concentration in water body k and subregion s for year t 

 

Note that 𝑟𝑘,𝑖,𝑡
𝑠 = 𝑟𝑘,𝑖

𝑠 + 𝑅𝑘,𝑖,𝑡
𝑠 (𝑆𝑡

𝑠
) (equation (8)) is completely defined by the 

hydrological variability in the agricultural sectors. This is the first endogenous 

component. 

 

The other endogenous component corresponds to 𝑐0𝑘,𝑡
, the COD 

concentration in the water bodies. We propose an expression for this term 

that takes into account decreases in COD concentration due to wetter 

hydrology and increases in COD concentration due to drier hydrology; this is 

based on the fact that the discharge of organic matter (whose indicator used 

is COD) depends on the economic system, which, in the case of this work, is 

considered constant, or more generally, its variability is much smaller than 

the hydrologic variability. 
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The variable 𝜋𝑘,𝑡

𝑠  is define by the hydrological model, for groundwater and 

surface water, like the ratio between the natural supply (hydrological model) 

in year t and the long-term natural supply, for the water body k and subregion 

s:  

𝜋𝑔𝑤,𝑡
𝑠 ≡

𝐼𝑡
𝑠

𝐼𝑠 
(35) 

 

𝜋𝑠𝑤,𝑡
𝑠 ≡

𝑅𝑡
𝑠

𝑅𝑠 
(36) 

 

Let define the following parameters: 

 

𝑐0𝑘
𝑚𝑖𝑛. : Minimum concentration in water body k 

𝑐0𝑘
𝑚𝑎𝑥. : Maximum concentration in water body k 

𝑐0𝑘
𝑚𝑒𝑎𝑛. : Mean concentration in water body k 

𝜋𝑘
𝑚𝑖𝑛. : Ratio of minimum volume to average volume in water body k   

𝜋𝑘
𝑚𝑎𝑥. : Ratio of maximum volume to average volume in water body k   

𝜋𝑘
𝑚𝑒𝑎𝑛. : Equal to 1 by definition 

 

A linear model is constructed to represent the relationship between the 

concentration in water bodies before discharge and hydrology (both surface 

and groundwater). The following linear relation is considered for  
𝑐0𝑘,𝑡

∈ (𝑐0𝑘
𝑚𝑖𝑛, 𝑐0𝑘

𝑚𝑎𝑥): 

 

𝑐0𝑘,𝑡
𝑠 = 𝑎 ∙ 𝜋𝑘,𝑡

𝑠 + 𝑏 (37) 

 

where, 

𝑎 = 𝑐0𝑘
𝑚𝑎𝑥 – 𝑐0𝑘

𝑚𝑖𝑛

𝜋𝑘
𝑚𝑖𝑛 – 𝜋𝑘

𝑚𝑎𝑥
 

𝑏 = 𝑐0𝑘
𝑚𝑒𝑎𝑛. − 𝑎 

 

For concentrations below the minimum and above the maximum, the ratio of 

the maximum concentration to the runoff or recharge level indicator 

(hydrology) is considered constant. Thus, the linear function is defined as 

follows: 

𝑐0𝑘,𝑡
𝑠 = {

    𝑐0𝑘
𝑚𝑖𝑛              𝑖𝑓 𝜋𝑘,𝑡 ≤ 𝜋𝑘

𝑚𝑖𝑛.

𝑎 ∙ 𝜋𝑘,𝑡 + 𝑏        𝑖𝑓 𝜋𝑘
𝑚𝑖𝑛 < 𝜋𝑘,𝑡

𝑠

    𝑐0𝑘
𝑚𝑎𝑥              𝑖𝑓 𝜋𝑘,𝑡 ≥ 𝜋𝑘

𝑚𝑎𝑥

                               

 

(38) 

 

When the concentration in the water bodies (𝑐
0𝑘,𝑡

𝑠 ) is higher than the standard 

concentration in average conditions (𝑐𝑠𝑘
), the standard concentration for the 
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year t in subregion s (𝑐
𝑠𝑘,𝑡

𝑠 ) is considered to be that of the water body, since 

in the model the water for dilution come from the hydrological system. Then: 

 

𝑐𝑠𝑘,𝑡
𝑠 = {

𝑐𝑠𝑘
𝑠        𝑖𝑓  𝑐0𝑘,𝑡

𝑠 ≤ 𝑐𝑠𝑘  

𝑐0𝑘,𝑡
𝑠     𝑖𝑓  𝑐0𝑘,𝑡

𝑠 > 𝑐𝑠𝑘 
                               

(39) 

 

With equation (38) this expression it is calculated 𝑢𝑘,𝑖,𝑡 in equation (34) and 

𝑤𝑘,𝑖,𝑡 with equation (33). Thus, the additional water for dilution with 

hydrological variability can be calculated as the difference between the 

stochastic model coefficient (𝑤𝑘,𝑖,𝑡) and deterministic model coefficient (𝑤𝑘,𝑖): 

 

𝐻𝑘,𝑖,𝑡
𝑠 [𝐼𝑡

𝑠, 𝑅𝑡
𝑠, 𝑅𝑘,𝑖,𝑡

𝑠 (𝑆𝑡
𝑠)] = 𝑤𝑘,𝑖,𝑡

𝑠 − 𝑤𝑘,𝑖
𝑠  

 

(40) 

 

With this last equation, the input-output model with hydrologic variability is 

fully determined, including endogenous changes in the water use coefficients, 

due to the natural hydrologic variability calculated by the multivariate model. 

 

The parameter considered are:  

 

𝑐𝑠𝑘
 = 20 mg/l 

𝑐0𝑘
𝑚𝑖𝑛. = 15 mg/l 

𝑐0𝑘
𝑚𝑎𝑥. = 25 mg/l 

𝑐0𝑘
𝑚𝑒𝑎𝑛. = 20 mg/l 

𝜋𝑘
𝑚𝑖𝑛. = 0.5 

𝜋𝑘
𝑚𝑎𝑥. = 1.5 

𝜋𝑘
𝑚𝑒𝑎𝑛. = 1.0 

 

2.7 Long-term natural supply 

 

The long-term natural water supply is calculated based on the natural supply 

estimated using the SWAT model and an adjustment factor derived from 

historical precipitation data for the period 1971–2020 (Bartolini, 2014, 2018; 

SIR Toscana, 2021). This methodology allows for the correction of climatic 

biases present in the study period considered in this work (2005–2013). 

 

Long-term groundwater recharge and surface runoff volumes are estimated 

as: 

 

𝐼 �̅� =
𝜏𝑠

𝑇
∑ 𝐼𝑡

𝑠

𝑇

𝑡=1

 
 

(41) 
 

�̅�𝑠 =
𝜏𝑠

𝑇
∑ 𝑅𝑡

𝑠

𝑇

𝑡=1

 
 

(42) 
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Where 𝜏𝑠 corresponds to a bias correction factor for the analysis period 

calculated on the basis of the precipitation for a longer period (𝑇∗, 1971 −

2020) and the precipitation for the analysis period (𝑇). 

 

 

2.8 Natural ecological supply and feasible supply 

 

Natural ecological supply (ES) refers to the long-term natural water supply 

net of the ecological flow requirement. 

 

𝐸𝑆𝑠 = 𝐼 �̅� + (1 − 𝐸)�̅�𝑠 (44) 

 

The estimation of feasible water supply follows the methodology proposed by 

Rocchi et al. (2021), which incorporates environmental, institutional, and 

technical constraints into the natural supply of surface and groundwater. 

 

 

𝑅𝑡
𝑠,𝑓𝑒𝑎𝑠

= {
    

  𝑅𝑡
𝑠 − 𝐸�̅�𝑠                        𝑖𝑓   𝐸�̅�𝑠 ≤ 𝑅𝑡

𝑠 ≤ 𝑀𝑠�̅�𝑠 + 𝐸�̅�𝑠 

     𝑀𝑠�̅�𝑠                                   𝑖𝑓   𝑅𝑡
𝑠 > 𝑀𝑠�̅�𝑠 + 𝐸�̅�𝑠

       0                                       𝑖𝑓  𝑅𝑡
𝑠 < 𝐸�̅�𝑠          

} 

 

(46) 

 

 

where,  

 

𝐼𝑡
𝑠  : Groundwater recharge volume in year t in subregion s 

𝐼 �̅� : Long-term groundwater recharge volume in subregion s 

𝐵𝑠 : Parameter defining the range of groundwater feasible availability in 
subregion s 

𝑅𝑡
𝑠 : Runoff volume in year t (multivariate model) 

�̅�𝑠 : Long-term runoff volume in subregion s 

𝐸 : Ecological flow as proportion of mean runoff 

𝑀𝑠 : Maximum volume of concessions as proportion of mean runoff in subregion 

s 

 

An environmental flow of 20% is considered for surface water (Rossi et al., 

2010), a depletion threshold of 13% for groundwater (Rocchi et al., 2024). 

In this case, the Maximum Volume of Concessions as a Proportion of Mean 

Runoff is set to 1, since no external water concessions are considered; the 

analysis is restricted to water naturally generated within the basin, along with 

𝜏𝑠 =

1
𝑇∗ ∑ 𝑃𝑡

𝑠𝑇∗

𝑡=1

1
𝑇

∑ 𝑃𝑡
𝑠𝑇

𝑡=1

 

 

(43) 
 

𝐼𝑡
𝑠,𝑓𝑒𝑎𝑠

= {

 𝐼 �̅�(1 − 𝐵𝑠)                             𝑖𝑓   𝐼𝑡
𝑠 <  𝐼 �̅�(1 − 𝐵𝑠)

𝐼 �̅�(1 + 𝐵𝑠𝐵)                              𝑖𝑓   𝐼𝑡
𝑠 > 𝐼 �̅�(1 + 𝐵𝑠)

            𝐼𝑡
𝑠                       𝑖𝑓   𝐼𝑡

𝑠 ∈ [𝐼 �̅�(1 − 𝐵𝑠), 𝐼 �̅�(1 + 𝐵𝑠)]

      } 

 

 

(45) 
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transfers from the Montedoglio reservoir— in contrast to Sturla and Rocchi 

(2022), who consider surface water supply based on concession volumes. 

 

2.9 Green water supply 

 

La oferta de agua verde se obtiene en base a la humedad del suelo (SM) y la 

evapotranspiración (ET) (Pacetti et al., 2021). Sin embargo, como en este 

estudio interesa la oferta de agua verde para para el sector agrícola durante 

el periodo de riego, por lo tanto se aplican dos factores: el porcentaje de area 

agrícola en cada LLS (𝛽𝐴
𝑠) y los meses del año en que hay riego (5). De esta 

forma el indicador de disponibilidad de agua   

 

𝐺𝑊𝐴𝑠 = (𝐸𝑇𝑠 + 𝑆𝑀𝑠) ∙ 𝛽𝐴
𝑠 ∙

5

12
 

(47) 

 

2.10 Scarcity indicators 

 

The following water scarcity indicators will be used to characterize the LLS. 

 

a) WEI   

 

The WEI corresponds to the ratio between blue water withdrawals of 

groundwater and surface water, and the long term natural availability net of 

the ecological flow (natural ecological supply, ES) (European Environmental 

Agency, 2005).  

 

b) WEI+ 

 

The WEI+, is an upgraded version of the WEI, which incorporates returns from 

water uses, therefore taking into account the net water demand 

(Faergemann, 2012; European Environmental Agency, 2020) 

 

c) EWEI 

 

The EWEI indicator is estimated as the extended water demand divided by 

the feasible supply (Sturla and Rocchi, 2022).  

 

 

 

𝑊𝐸𝐼𝑡 =
∑ ∑ 𝑓𝑘,𝑖,𝑡

𝑠 ∙ 𝑥𝑖
𝑠2

𝑘=1
𝑁
𝑖=1

𝐸𝑆𝑠
 

(48) 

 

𝑊𝐸𝐼𝑡
+ =

∑ ∑ (𝑓𝑘,𝑖,𝑡
𝑠 − 𝑟𝑘,𝑖,𝑡

𝑠 ) ∙ 𝑥𝑖
𝑠2

𝑘=1
𝑁
𝑖=1

𝐸𝑆𝑠
 

(49) 

 

𝐸𝑊𝐸𝐼𝑡 =
∑ ∑ (𝑓𝑘,𝑖,𝑡

𝑠 − 𝑟𝑘,𝑖,𝑡
𝑠 + 𝑤𝑘,𝑖,𝑡

𝑠 ) ∙ 𝑥𝑖
𝑠2

𝑘=1
𝑁
𝑖=1

𝐼𝑡
𝑠,𝑓𝑒𝑎𝑠

+ 𝑅𝑡
𝑠,𝑓𝑒𝑎𝑠  

(50) 
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d) EWEI* 

 

The EWEI* indicator corresponds to the EWEI calculated using the natural 

ecological supply in the year of analysis, rather than in the long term. It is 

defined as the groundwater recharge and surface runoff, minus the ecological 

flow. This indicator is proposed in the present study. 

 

 

e) GWSI 

 

The green water scarcity index (GWSI) is derived based on agricultural soil 

moisture demand and green water supply. v 

 

 

This study considers the standard scarcity threshold values, 20% for scarcity 

and 40% for severe scarcity (OECD, 2015; Pfister et al., 2009). 

 

 

2.11 Data 

 

The input data for the SWAT model—including precipitation, temperature, 

solar radiation, relative humidity, and other climatic variables—were obtained 

from Braca et al. (2021, 2022), Sir Toscana (2021), and ISTAT (2021).  

 

The intensity coefficients for blue and green water use were sourced from the 

study by Sturla and Rocchi (2022). For water quality parameters related to 

effluent discharges (COD), the legally permitted maximum values were used, 

based on ISTAT (2019). 

 

The thresholds for moderate and severe water scarcity indicators were 

obtained from the European Environmental Agency (2020), with values of 0.2 

and 0.4, respectively. 

 

The MRIO table used in this study (Figure 4) was developed by the Tuscan 

Regional Institute for Economic Planning (IRPET, 2021). The original table 

included agriculture as a single industry. The final multi-regional matrix is 

referred to year 2017 and contains 53 economic sectors, 49 LLSs, 5 

components of the internal final demand and 4 components of external final 

demand (Rest of Italy and Rest of the World). 

 

 

 

𝐸𝑊𝐸𝐼𝑡
∗𝑠 =

∑ ∑ (𝑓𝑘,𝑖,𝑡
𝑠 − 𝑟𝑘,𝑖,𝑡

𝑠 + 𝑤𝑘,𝑖,𝑡
𝑠 ) ∙ 𝑥𝑖

𝑠2
𝑘=1

𝑁
𝑖=1

𝐼𝑡
𝑠 + 𝑅𝑡

𝑠 − 𝐸�̅�𝑠
 

(51) 

 

𝐺𝑊𝑆𝐼𝑡
𝑠 =

∑ 𝑓𝑠𝑚,𝑖,𝑡
𝑠 ∙ 𝑥𝑖

𝑠𝑁
𝑖=1

𝐺𝑊𝐴𝑡
𝑠  

(52) 
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Figure 4. Structure of the IRIO table of Tuscany 

 
Source: own elaboration based on IRPET (2021) 

 

All other data sources have been described in the previous sections. 
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3 RESULTS 

 

3.1 Hydrological results 

 

Table 1 presents the results of the hydrological model by LLS and year, which 

are used in this study to estimate both water supply and demand in their 

various forms. Figure 5 shows the average natural supply of groundwater 

(recharge) and surface water (runoff). 

 

Table 1. Hydrological results by LLS and year 

LLS Year 
Precipitation 

[Mm3] 
Evapotranspiratio

n [Mm3] 

Groundwate
r Recharge 

[Mm3] 

Surface 
Runoff 
[Mm3] 

Soil 
Moisture 

[Mm3] 

Green 
Water 
Supply 
[Mm3] 

Arezzo 

2014 686.9 396.0 178.9 93.5 80.0 73.4 

2015 552.1 410.1 99.2 74.3 68.1 73.7 

2016 856.6 422.8 217.7 153.2 78.7 77.3 

2017 487.5 343.6 91.0 54.1 63.4 62.7 

2018 735.1 365.9 212.3 116.2 71.7 67.4 

2019 805.3 373.6 214.0 183.2 82.9 70.4 

2020 655.1 366.3 155.7 106.0 76.1 68.2 

                

Bibbiena 

2014 902.8 333.0 321.5 199.4 81.4 29.4 

2015 568.2 356.1 136.3 82.5 67.4 30.0 

2016 881.7 357.7 285.9 188.5 78.9 30.9 

2017 575.8 342.6 127.2 76.1 62.1 28.7 

2018 897.5 326.0 319.3 207.3 79.8 28.7 

2019 983.9 328.7 310.1 298.2 81.4 29.0 

2020 820.8 335.5 238.5 159.4 78.7 29.3 

                

Cortona 

2014 414.5 259.6 82.8 54.8 58.5 68.9 

2015 283.8 249.6 30.9 45.9 45.2 63.9 

2016 489.2 281.8 83.4 74.0 58.3 73.7 

2017 338.9 247.1 53.1 45.6 45.9 63.5 

2018 434.7 241.8 80.4 84.0 51.9 63.6 

2019 371.2 235.9 59.1 60.8 57.3 63.5 

2020 308.1 205.8 68.9 37.8 48.1 55.0 

                

Montepulcian
o 

2014 368.9 240.9 46.2 62.7 71.1 84.5 

2015 259.9 246.1 17.9 46.8 54.8 81.5 

2016 439.6 267.3 37.0 88.3 68.0 90.8 

2017 159.6 178.9 6.4 7.9 46.0 60.9 

2018 434.0 231.1 46.6 111.7 59.7 78.8 

2019 424.3 224.0 54.3 127.5 71.0 79.9 

2020 291.0 221.7 27.6 38.7 67.9 78.4 

                

Sinalunga 

2014 270.6 175.3 50.2 33.4 44.9 56.9 

2015 205.5 179.9 25.7 30.6 35.8 55.7 

2016 338.8 190.8 55.4 59.4 43.6 60.6 

2017 133.4 134.5 11.9 7.3 31.4 42.8 

2018 305.5 163.6 55.6 58.8 37.7 52.0 

2019 324.7 159.3 72.3 82.7 44.7 52.7 

2020 226.0 160.1 33.5 25.7 42.3 52.3 

Source: Own elaboration 
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Figure 5. Natural supply by LLS (blue water) 

 
Source: Own elaboration 

 

Figure 6 shows the green water supply by LLS, estimated as the soil moisture 

in agricultural areas during the irrigation months. 

 

Figure 6. Green water supply by LLS 

 
Source: Own elaboration 

 

3.2 Water demand 

 

Water demand by LLS has been estimated based on the interaction between 

the MRIO model and the hydrological model. Four types of demand have been 

characterized: water withdrawals (WD), net demand or blue water (ND), 

extended demand, which includes blue and grey water (ED), and green water 

demand (GD). All types of demand exhibit annual variability due to the green-

to-blue water substitution mechanism in agriculture. However, this variability 

is only observed in Cortona, Sinalunga, where green water deficits trigger 
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substitution; in Arezzo and Bibbiena, no green water shortage occurs. ED 

consistently shows variability as well, due to the mixing model—dependent 

on water supply—used to estimate grey water for discharging industries. 

Table 2 presents these results by LLS and by year. 

 

Table 2. Water demand by LLS and year 

LLS 
Demand 
Category 

2014 2015 2016 2017 2018 2019 2020 

Arezzo 

WD 12.2 12.2 12.2 12.2 12.2 12.2 12.2 

ND 23.8 23.8 23.8 23.8 23.8 23.8 23.8 

ED 57.9 57.9 57.9 57.9 57.9 57.9 57.9 

GD 30.3 29.7 26.9 29.1 30.3 25.8 30.8 

                  

Bibbiena 

WD 2.4 2.4 2.4 2.4 2.4 2.4 2.4 

ND 6.4 6.4 6.4 6.4 6.4 6.4 6.4 

ED 26.1 26.1 26.1 26.1 26.1 26.1 26.1 

GD 9.0 9.0 9.2 9.0 8.9 8.0 9.5 

                  

Cortona 

WD 9.3 14.7 9.4 14.4 12.0 9.8 13.5 

ND 30.2 49.2 30.6 48.3 39.7 32.0 45.1 

ED 65.4 65.4 65.4 65.4 65.4 65.4 65.4 

GD 30.9 47.4 29.9 47.1 37.3 33.0 44.1 

                  

Montepulciano 

WD 1.4 1.4 1.4 3.3 1.4 1.4 1.4 

ND 6.3 6.3 6.3 16.2 6.3 6.3 6.3 

ED 79.0 79.0 79.0 79.0 79.0 79.0 79.0 

GD 7.5 7.5 7.2 16.3 6.7 6.7 7.5 

                  

Sinalunga 

WD 4.0 6.6 4.4 7.8 6.0 4.1 4.8 

ND 10.6 23.6 12.4 30.0 20.9 10.9 14.4 

ED 51.9 51.9 51.9 51.9 51.9 51.9 51.9 

GD 12.7 23.5 13.1 28.5 20.0 11.4 15.7 

Source: Own elaboration 

 

3.3 Scarcity indicators 

 

Figures 7 to 11 show the temporal evolution of the four indicators related to 

blue and grey water (WEI, WEI+, EWEI, EWEI*). These figures include the 

thresholds for moderate (0.2) and severe (0.4) water scarcity. In addition, 

the EWEI obtained in the study by Sturla and Rocchi (2022) is included for 

comparison. 

 

Figure 12 presents the green water scarcity indicator (GWSI) proposed in this 

study for all LLS. This indicator reflects situations in which a green water 

deficit occurs and must be compensated by blue water. It can be observed 

that the three previously mentioned LLS experience green water scarcity in 

certain years. 
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Figure 7. Scarcity indicators (Arezzo) 

 
Source: Own elaboration 

 

Figure 8. Blue and grey water scarcity indicators (Bibbiena) 

 
Source: Own elaboration 
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Figure 9. Blue and grey water scarcity indicators (Cortona) 

 
Source: Own elaboration 

 

Figure 10. Blue and grey water scarcity indicators (Montepulciano) 

 
Source: Own elaboration 
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Figure 11. Blue and grey water scarcity indicators (Sinalunga) 

 
Source: Own elaboration 

 

Figure 12. Green water scarcity indicator (All LLS) 

 
Source: Own elaboration 
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4 DISCUSSION 

 

The results indicate that: 

 

• Arezzo: Only in one year does the EWEI* exceed the moderate scarcity 

threshold, and there is no green water deficit throughout the period. 

All indicators remain below the EWEI estimated by Sturla and Rocchi 

(2022), which had suggested moderate scarcity. This LLS does not 

experience water scarcity. 

• Bibbiena: None of the indicators exceed the moderate scarcity 

threshold, and there is no green water deficit. These results are 

consistent with the findings of Sturla and Rocchi (2022). 

• Cortona: The WEI (3 years), EWEI* (2 years), and EWEI (3 years) 

indicators exceed the severe scarcity threshold. This LLS experiences 

green water deficits in 5 out of the 7 simulated years. Sturla and Rocchi 

(2022) had estimated only moderate scarcity. 

• Montepulciano: Only the EWEI exceeds scarcity thresholds, indicating 

severe scarcity in one year, which coincides with a strong green water 

deficit. 

• Sinalunga: The EWEI* (2 years) and EWEI (1 year) indicators exceed 

the severe scarcity threshold. The other indicators exceed the 

moderate scarcity threshold in at least one year. Green water deficit 

occurs in only one year. 

 

The results reveal significant water scarcity issues in Cortona, Montepulciano, 

and Sinalunga, with Cortona and Sinalunga being the most critical cases. 

Severe scarcity is primarily captured by the EWEI* and EWEI indicators, as 

they include grey water. In the years of greatest scarcity, lower blue water 

availability and green water deficits result in increased grey water 

requirements (due to reduced surface flows for pollutant dilution) and greater 

use of blue water to sustain agricultural activity. 

 

The analysis reflects a comprehensive characterization of water scarcity, 

incorporating hydrological and economic realism. The interaction between the 

hydrological and hydroeconomic modules enables dynamic representation of 

critical aspects such as grey water and the additional blue water used in 

agriculture. This constitutes a key contribution to both the academic literature 

and water management policies in the upper Arno River basin. From a policy 

design perspective, the study underscores the importance of explicitly 

considering water–economy interactions, which are often overlooked. Both 

hydrology and the economy are inherently dynamic, and this framework 

captures that complexity. 

 

Limitations and future work: This study relies on exogenous scarcity 

thresholds, which could be endogenously defined in future research by 

incorporating intra-annual variability in agricultural and domestic water 

demand. Moreover, the spatial scope is limited to a subset of the Tuscany 

region, which restricts regional-scale analysis of scarcity and the design of 
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coherent public policies. Future work should expand hydrological modeling to 

include the remaining basins in the region. This extension would also enable 

the use of the MRIO model to evaluate virtual water flows across the local 

economies of Tuscany—offering valuable insights into the economic use and 

governance of water. Such an approach would also allow for the estimation 

of the water footprint of each LLS, adjusted by scarcity and incorporating 

social criteria, such as the local capacity for socio-institutional water 

governance (Sturla et al., 2023; Wilkens, 2017; Wang et al., 2021; Pfister et 

al., 2009). 
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5 CONCLUSIONS 

 

This study focuses on the harmonization of hydrological and economic scales, 

a relevant issue in the literature on environmentally extended input–output 

(EEIO) models. This is achieved by aggregating sub-basins by LLS, allowing 

the estimation of natural water supply in local economies using a SWAT 

model, including green water supply—typically omitted in previous input–

output models. The interaction between the SWAT model and the hydro-

economic MRIO model enables the estimation of blue, grey, and green water 

demand. 

 

The integrated model is applied to five local economies located in the upper 

Arno River basin in Tuscany, Italy. Based on this model, five indicators are 

estimated to characterize water scarcity in each LLS (WEI, WEI+, EWEI*, 

EWEI, and GWSI), two of which (EWEI* and GWSI) are proposed in this 

study. 

 

Unlike previous MRIO models, this study enables the characterization of both 

blue and green water supply at the hydrological scale (i.e., sub-basin). The 

inclusion of green water supply allows for a realistic simulation of the green-

to-blue water substitution mechanism in agriculture—affecting all blue water 

scarcity indicators—by explicitly estimating soil moisture scarcity. This 

represents a notable improvement over the study by Sturla and Rocchi 

(2022), which used precipitation as a proxy for soil moisture. 

 

The results show that three LLS experience green water scarcity in some 

years, which is reflected in an increase in blue water scarcity indicators. 

Regarding scarcity levels, two LLS (Arezzo and Bibbiena) exhibit virtually no 

scarcity. The other three LLS (Cortona, Montepulciano, and Sinalunga) 

present years of severe scarcity, especially when considering the EWEI* and 

EWEI indicators. This is because these indicators incorporate grey water and 

water supply; in the case of EWEI, feasible supply is considered, which is on 

average 10% lower than the natural ecological supply. Notably, EWEI*—

although based on a higher supply—can sometimes exceed EWEI because it 

does not account for the groundwater storage capacity. 

 

In conclusion, this study makes a significant contribution: by integrating a 

hydro-economic model with a physically based model, it enables, for the first 

time, a precise simulation of the green-to-blue water substitution mechanism 

and the reduced dilution capacity of water bodies during dry years. Moreover, 

by comparing various indicators from the literature with two newly proposed 

ones, it allows for a more comprehensive characterization of water scarcity. 
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