

# An integrated input-output and household expenditure model

Umed Temursho and Matthias Weitzel Joint Research Centre, European Commission, Seville, Spain

30<sup>th</sup> IIOA Conference, Santiago de Chile, July 1 – July 5, 2024

> Joint Research Centre

## Outline

- Motivation and aims
- Taylor's consumer expenditure model
- Internal structure of EU consumption expenditures
- Integrating the macro-micro twins
- Empirical application of increased energy prices
- Concluding remarks



### Motivation and aims



#### Consumer Demand in the United States

Prices, Income, and Consumption Behavior Book | © 2010

Latest edition

Access provided by The European Commission Library

Download book PDF 坐

🖉 💧 🤇 Download book EPUB 坐

#### Overview

#### Authors: Lester D. Taylor , H.S. Houthakker

- Original editions sold 2500 copies and were among the most highly cited books in the field of demand theory
- Taylor and Houthakker are two of the most well-known scholars in the field of demand analysis and consumption behavior, and pioneered dynamic consumption models that have been workhorses of applied econometrics for over 40 years
- Most extensive coverage of price and income elasticities in relation to consumer demand to be found in any
  publication
- Introduces models that will help economists and industry specialists to forecast future price elasticities
- Stands at crossroads of economics and psychology, appealing to diverse audience



#### **Overview**

#### Authors: Lester D. Taylor

- Investigates consumer behavior beyond the conventional price and income elasticities
- Provides in-depth statistical analysis of consumer spending and behavior
- Examines the US allocation of expenditures amongst different categories of consumption:



## Motivation and aims

Taylor (2014), The Internal Structure of US Consumption Expenditures

- An "almost entirely statistical and mathematical" approach
- May be consistent with a variety of preference structures: neoclassical, lexicographical, hierarchical, etc.
- Direct and indirect interrelationships between all consumer expenditures
- "Sufficient stability exists in expenditure interrelationships that intrabudget coefficients can be taken as stable characteristics of household consumption behaviour" (Taylor, 2014, p. 165)



### Taylor's consumer expenditure model

Run OLS regressions:

$$e_{hi} = \zeta_i + \sum_{j \neq i} \beta_{ij} e_{hj} + \gamma_i y_h + u_{hi} \quad \text{for all } i = 1, \dots, g \tag{1}$$

Evaluate at the mean values of the variables:

Reduced-form:

$$\mathbf{e} = \begin{bmatrix} \overline{e}_1 \\ \overline{e}_2 \\ \vdots \\ \overline{e}_g \end{bmatrix}, \quad \mathbf{y} = \overline{\mathbf{y}}, \quad \boldsymbol{\zeta} = \begin{bmatrix} \hat{\zeta}_1 \\ \hat{\zeta}_2 \\ \vdots \\ \hat{\zeta}_g \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \hat{\beta}_{11} & \hat{\beta}_{12} & \cdots & \hat{\beta}_{1g} \\ \hat{\beta}_{21} & \hat{\beta}_{22} & \cdots & \hat{\beta}_{2g} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\beta}_{g1} & \hat{\beta}_{g2} & \cdots & \hat{\beta}_{gg} \end{bmatrix}, \quad \text{and} \quad \boldsymbol{\gamma} = \begin{bmatrix} \hat{\gamma}_1 \\ \hat{\gamma}_2 \\ \vdots \\ \hat{\gamma}_g \end{bmatrix}, \quad (2)$$

Structural form:  $e = \zeta + Be + \gamma y$ 

$$\mathbf{e} = (\mathbf{I} - \mathbf{B})^{-1} \left( \boldsymbol{\zeta} + \boldsymbol{\gamma} \boldsymbol{y} \right). \tag{4}$$

Consumption expenditure multiplier matrix, or the Taylor inverse:  $T \equiv (I - B)^{-1}$ 



(3)

## Internal structure of EU consumption expenditures

- Data: EU HBS 2010 and 2015 waves, plus Austrian microdata for 2009-2010 and 2014-2015
- Instead of single constant, we use country dummies

$$e_{hi} = \sum_{r} \zeta_i^r D_r + \sum_{j \neq i} \beta_{ij} e_{hj} + \gamma_i y_h + u_{hi} \quad \text{for all } i = 1, \dots, g, \tag{5}$$

• The corresponding reduced form, with country relative size/weights w:

$$\mathbf{e} = (\mathbf{I} - \mathbf{B})^{-1} \left( \mathbf{Z}\mathbf{w} + \boldsymbol{\gamma} \boldsymbol{y} \right), \tag{6}$$

 $\mathbf{Z} = [\boldsymbol{\zeta}^1 \boldsymbol{\zeta}^2 \cdots \boldsymbol{\zeta}^{n_r}]$  is the  $g \times n_r$  matrix of exogenous expenditures

• Expenditures and net income are expressed per adult equivalent



#### IS of EU consumption expenditures

|             | Category    | c1                                           | c2      | c3      | c4      | c5     | c6      | ¢7      | c8     | c9      | c10     | c11     | Zw     | Inc       | R2   |
|-------------|-------------|----------------------------------------------|---------|---------|---------|--------|---------|---------|--------|---------|---------|---------|--------|-----------|------|
|             |             | Coefficients of intra-budget OLS regressions |         |         |         |        |         |         |        |         |         |         |        |           |      |
| c1          | FoodNalcBvg | 1223                                         | 0.1999  | 0.1078  | -0.0153 | 0.0395 | 0.0325  | 0.0023  | 0.1237 | 0.0224  | -0.0035 | 0.0566  | 1543.0 | 0.0125    | 0.38 |
| c2          | AlcBvgTbc   | 0.0653                                       |         | -0.0058 | 0.0119  | 0.0028 | -0.0014 | 0.0012  | 0.0854 | 0.0017  | 0.0374  | -0.0035 | 75.2   | 0.0013    | 0.09 |
| c3          | ClothFtwr   | 0.0806                                       | -0.0133 |         | 0.0001  | 0.0289 | 0.0088  | 0.0067  | 0.1810 | 0.0309  | 0.1058  | 0.0564  | 27.2   | 0.0097    | 0 24 |
| c4          | HousWtrElc  | -0.0595                                      | 0.1419  | 0.0005  |         | 0.0645 | 0.0112  | -0.0069 | 0.6233 | -0.0021 | 0.0412  | 0.0177  | 1827.1 | 0.0046    | 0.26 |
| c5          | FurnshHeqp  | 0.1134                                       | 0.0246  | 0.1111  | 0.0475  |        | 0.0285  | 0.0081  | 0.1233 | 0.0299  | 0.0400  | 0.0631  | -224.6 | 0.0190    | 0.12 |
| c6          | Health      | 0.0641                                       | -0.0085 | 0.0232  | 0.0057  | 0.0196 |         | -0.0008 | 0.0311 | 0.0199  | 0.0048  | 0.0302  | -3.8   | 0.0201    | 0.08 |
| c7          | Transport   | 0.0326                                       | 0.0515  | 0.1305  | -0.0255 | 0.0407 | -0.0056 |         | 0.5734 | 0.0398  | 0.2683  | 0.0933  | -29.5  | 0.0635    | 0.13 |
| c8          | Communicat  | 0.0097                                       | 0.0208  | 0.0190  | 0.0126  | 0.0034 | 0.0012  | 0.0031  | 0770   | 0.0050  | 0.0145  | 0.0140  | 285.3  | 0.0026    | 0.33 |
| c9          | RecreatCult | 0.0976                                       | 0.0224  | 0.1803  | -0.0023 | 0.0454 | 0.0438  | 0.0120  | 0.2776 |         | 0.1405  | 0.0746  | -4.3   | 0 0 2 8 8 | 0.20 |
| c10         | RestrntHotl | -0.0050                                      | 0.1578  | 0.1950  | 0.0146  | 0.0192 | 0.0033  | 0.0256  | 0.2554 | 0.0445  |         | 0.0600  | -73.8  | 0.0268    | 0.29 |
| <b>c1</b> 1 | MiscGSEduc  | 0.1204                                       | -0.0226 | 0.1604  | 0.0097  | 0.0468 | 0.0326  | 0.0137  | 0.3799 | 0.0364  | 0.0925  |         | 246.3  | 0.0297    | 0.37 |
| -           |             | Coefficients of intra-budget WLS regressions |         |         |         |        |         |         |        |         |         |         |        |           |      |
| c1          | FoodNalcBvg |                                              | 0.1770  | 0.0889  | -0.0278 | 0.0525 | 0.0334  | 0.0023  | 0.1110 | 0.0263  | -0.0161 | 0.0618  | 1674.0 | 0.0149    | 0.24 |
| c2          | AlcBvgTbc   | 0.0526                                       |         | -0.0038 | 0.0119  | 0.0022 | 0.0012  | 0.0016  | 0.1059 | 0.0020  | 0.0379  | -0.0043 | 119.5  | 0.0009    | 0.07 |
| c3          | ClothFtwr   | 0.0486                                       | -0.0070 |         | 0.0016  | 0.0276 | 0.0140  | 0.0073  | 0.2096 | 0.0301  | 0.0944  | 0.0423  | 96.0   | 0 0088    | 0 18 |
| c4          | HousWtrElc  | -0.0910                                      | 0.1316  | 0.0095  |         | 0.0446 | 0.0183  | -0.0104 | 0.7744 | 0.0016  | 0.0493  | -0.0081 | 2335.7 | 0.0075    | 0.24 |
| c5          | FurnshHeqp  | 0.1106                                       | 0.0155  | 0.1065  | 0.0287  | -      | 0.0333  | 0.0080  | 0.1341 | 0.0367  | 0.0237  | 0.0723  | -260.0 | 0.0201    | 0.10 |
| c6          | Health      | 0.0444                                       | 0.0053  | 0.0340  | 0.0074  | 0.0210 |         | -0.0026 | 0.0249 | 0.0207  | 0.0069  | 0.0286  | 17.6   | 0.0154    | 0.06 |
| c7          | Transport   | 0.0253                                       | 0.0618  | 0.1497  | -0.0357 | 0.0425 | -0.0221 |         | 0.6601 | 0.0386  | 0.3579  | 0.0734  | -5.4   | 0.0580    | 0.11 |
| c8          | Communicat  | 0.0062                                       | 0.0199  | 0.0214  | 0.0132  | 0.0036 | 0.0010  | 0.0033  |        | 0.0067  | 0.0125  | 0.0104  | 316.8  | 0.0020    | 0.26 |
| c9          | RecreatCult | 0.0863                                       | 0.0216  | 0.1808  | 0.0016  | 0.0571 | 0.0510  | 0.0113  | 0.3947 |         | 0.1328  | 0.0629  | 5.9    | 0.0290    | 0.17 |
| c10         | RestrntHotl | -0.0197                                      | 0.1566  | 0.2117  | 0.0185  | 0.0138 | 0.0064  | 0.0390  | 0.2756 | 0.0496  |         | 0.0418  | -102.1 | 0.0269    | 0.23 |
| c11         | MiscGSEduc  | 0.1296                                       | -0.0305 | 0.1623  | -0.0052 | 0.0720 | 0.0450  | 0.0137  | 0.3907 | 0.0402  | 0.0715  | -       | 427.0  | 0.0305    | 0.29 |

Table 1: Coefficients of intra-budget regressions for EU26, 2015



#### IS of EU consumption expenditures



*Note*: DI and DIO refer, respectively, to the poorest and richest EU-wide deciles. This household categorization is based on equivalized net income.

The capacity of *endogenous* generation of consumption expenditures generally decreases with consumer's income level.

Mirrors the *decreasing MPC* as income rises (Keynes, 1936)



### IS of EU consumption expenditures

Figure 4: Contributions of total exogenous and endogenous expenditures



On average, from 26% to 29% of total household spending is accounted for by exogenous expenditures, while the corresponding range of total endogenous expenditure contribution is 45%-49%.

A counterpart of 50% subsistence share 'rule of thumb' in LES maybe a 30% exogenous expenditure share



#### Integrating the macro-micro twins to assess the effects of price changes

• A "partial equilibrium" analysis:

$$\mathbf{e}^{r} = \sigma_{\{\rho_{r}y_{r}\}} \mathbf{T}^{r} (\hat{\mathbf{p}}_{rel}^{r} \boldsymbol{\zeta}^{r} + \boldsymbol{\gamma}^{r} y_{r}), \qquad (8.a)$$

$$\mathbf{c}^r = (\hat{\mathbf{p}}_{rel}^r)^{-1} \mathbf{e}^r, \tag{8.b}$$

• To account for the demand-driven multiplier process, we interlink the "macro-micro twins":

$$f_{grw}^r = \mathbf{S}^r \mathbf{c}_{grw}^r,\tag{11}$$

$$\Delta \mathbf{f}^r = \sigma_{\{\alpha \imath' \Delta \mathbf{c}^r\}} (\widehat{\imath \otimes \mathbf{f}_{grw}^r}) \mathbf{f}^r, \tag{12}$$

$$\Delta \mathbf{x} = \mathbf{L} \big( \sum_{r \in EU} \Delta \mathbf{f}^r \big), \tag{13}$$

$$\Delta y_r = \left(\mathbf{w}^r\right)' \Delta \mathbf{x}^r,\tag{14}$$

$$\mathbf{e}^{r} = \sigma_{\{\rho_{r}y_{r}(1+y_{grw}^{r})\}} \mathbf{T}^{r} \left( \hat{\mathbf{p}}_{rel}^{r} \boldsymbol{\zeta}^{r} + \boldsymbol{\gamma}^{r} y_{r}(1+y_{grw}^{r}) \right), \tag{15}$$

$$\mathbf{c}^r = \left(\hat{\mathbf{p}}_{rel}^r\right)^{-1} \mathbf{e}^r. \tag{16}$$



### Empirical application of the integrated macromicro twins

- Consider price changes from the MIX scenario in Weitzel et al. (2023)
- Reaching a 55% reduction in EU GHG emissions by 2030 compared to 1990 levels
- Effects of both regulatory measures and price-based policies:
  - implementation of standards for e.g. vehicles and buildings
  - Increased stringency in the EU ETS and carbon pricing for the buildings sector and transport under a second EU ETS
- We use the average EU prices, obtained from the JRC-GEM-E3 model
  - Use 11 COICOP consumption categories in the micro-model
  - Apply these prices identically to each EU country
- MRIO data from FIGARO (2015): 63 products, 28 regions (27 EU + RoW)



## The micro-based impacts of (energy) price increases

| Chartent     | Commention antenna description                   | Price      | Impact on EU consumption (%) |       |  |
|--------------|--------------------------------------------------|------------|------------------------------|-------|--|
| Shortcut     | Consumption category description                 | change (%) | OLS                          | WLS   |  |
| FoodNalcBvg  | Food and non-alcoholic beverages                 | 0.12       | -0.76                        | -0.84 |  |
| AlcBvgTbc    | Alcoholic beverages, tobacco and narcotics       | 0.12       | -0.40                        | -0.45 |  |
| ClothFtwr    | Clothing and footwear                            | 0.07       | -0.70                        | -0.76 |  |
| HousWtrElc   | Housing, water, electricity, gas and other fuels | 4.43       | -1.60                        | -1.49 |  |
| FurnshHegp   | Furnishings, household equipment and routine     | 0.09       | -0.45                        | -0.53 |  |
|              | maintenance of the house                         | -255375    |                              |       |  |
| Health       | Health                                           | 0.06       | -0.43                        | -0.48 |  |
| Transport    | Transport                                        | 1.26       | -1.94                        | -2.07 |  |
| Communicat   | Communication                                    | 0.02       | -0.47                        | -0.52 |  |
| RecreatCult  | Recreation and culture                           | 0.20       | -0.85                        | -0.92 |  |
| RestrntHotl  | Restaurants and hotels                           | 0.20       | -0.66                        | -0.71 |  |
| MiscGSEduc   | Miscellaneous goods and services, inc. education | 0.03       | -0.66                        | -0.75 |  |
| Average EU p | price change and total EU consumption impact (%) | 1.08       | -1.02                        | -1.07 |  |

Table 2: Price shocks and the initial EU consumption impacts from Taylor model

Relatively more basic or necessity nature of *HousWtrElc* compared to *Transport* (captured by **T** and **z**)



#### Accounting for income-induced impacts



Figure 6: Round-by-round income and consumption impacts





#### Accounting for income-induced impacts

Table 3: Direct price-induced and indirect income-induced consumption impacts (%)

|      | M      | icro-model b | ased on O | Micro-model based on WLS |        |          |       |            |  |
|------|--------|--------------|-----------|--------------------------|--------|----------|-------|------------|--|
|      | Direct | Indirect     | Total     | Direct (%)               | Direct | Indirect | Total | Direct (%) |  |
| AT   | -1.08  | -0.79        | -1.87     | 57.7                     | -1.12  | -0.82    | -1.93 | 57.8       |  |
| BE   | -0.99  | -0.61        | -1.59     | 62.0                     | -1.02  | -0.64    | -1.66 | 61.6       |  |
| BG   | -0.95  | -0.81        | -1.76     | 53.8                     | -0.93  | -0.82    | -1.76 | 53.2       |  |
| CY   | -0.77  | -0.80        | -1.57     | 49.1                     | -0.79  | -0.82    | -1.61 | 49.3       |  |
| CZ   | -1.20  | -0.77        | -1.97     | 60.9                     | -1.23  | -0.79    | -2.02 | 60.9       |  |
| DE   | -1.14  | -0.78        | -1.92     | 59.3                     | -1.22  | -0.84    | -2.06 | 59.3       |  |
| DK   | -1.23  | -0.69        | -1.92     | 64.3                     | -1.35  | -0.73    | -2.07 | 64.9       |  |
| EE   | -0.95  | -0.64        | -1.59     | 59.8                     | -0.98  | -0.66    | -1.64 | 59.8       |  |
| EL   | -0.85  | -1.14        | -1.99     | 42.7                     | -0.85  | -1.15    | -2.00 | 42.4       |  |
| ES   | -0.85  | -0.87        | -1.72     | 49.3                     | -0.88  | -0.91    | -1.79 | 49.2       |  |
| FI   | -1.13  | -0,66        | -1.79     | 63.1                     | -1.21  | -0.70    | -1.91 | 63.4       |  |
| FR   | -0.98  | -0.70        | -1.68     | 58.2                     | -1.03  | -0.72    | -1.75 | 58.9       |  |
| HR   | -0.96  | -1.00        | -1.97     | 49.1                     | -0.96  | -1.00    | -1.96 | 48.9       |  |
| HU   | -1.17  | -0.74        | -1.91     | 61.5                     | -1.17  | -0.74    | -1.91 | 61.0       |  |
| IE   | -0.99  | -0.44        | -1.43     | 69.3                     | -1.01  | -0.46    | -1.47 | 68.8       |  |
| LT   | -0.83  | -0.75        | -1.58     | 52.6                     | -0.85  | -0.76    | -1.61 | 52.7       |  |
| LU   | -1.04  | -0.53        | -1.57     | 66.0                     | -1.08  | -0.57    | -1.65 | 65.6       |  |
| LV   | -0.96  | -0.77        | -1.74     | 55.6                     | -0.95  | -0.78    | -1.73 | 54.8       |  |
| MT   | -0.62  | -0.51        | -1.13     | 54.8                     | -0.65  | -0.53    | -1.18 | 55.0       |  |
| NL   | -0.95  | -0.56        | -1.50     | 63.0                     | -1.17  | -0.65    | -1.82 | 64.4       |  |
| PL   | -1.15  | -0.95        | -2.10     | 54.8                     | -1.15  | -0.96    | -2.11 | 54.5       |  |
| PT   | -0.95  | -1.08        | -2.03     | 46.9                     | -0.96  | -1.09    | -2.05 | 46.7       |  |
| RO   | -0.98  | -0.95        | -1.93     | 51.0                     | -0.96  | -0.94    | -1.90 | 50.5       |  |
| SE   | -1.20  | -0.66        | -1.86     | 64.4                     | -1.24  | -0.69    | -1.92 | 64.4       |  |
| SI   | -0.99  | -0.74        | -1.73     | 57.1                     | -1.01  | -0.75    | -1.77 | 57.3       |  |
| SK   | -1.26  | -0.90        | -2.16     | 58.3                     | -1.18  | -0.89    | -2.07 | 57.2       |  |
| EU26 | -1.02  | -0.71        | -1.72     | 59.1                     | -1.07  | -0.74    | -1.80 | 59.2       |  |

Generally, the greater portion of consumption losses comes from the direct price-induced impacts

Country heterogeneity due to different consumer responses (micro-model), and the structure and size of global production interdependencies and private consumption demand (macro-model)



## **Concluding remarks**

- First application of the Taylor model for the case of the EU
- Internal structure of EU consumption expenditures
- Extensive comparisons of the estimated model's components over time
- Integration with the IO quantity model and its application to assess the consumption and income impacts of energy price increases
- The Taylor micro-model can be used for a better or further understanding of the household-level consumption, income, and distributional impacts of policies



## Thank you



© European Union, 2024

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.



