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Abstract

The aim of this paper is to explore the possibility of bringing a temporal dimension to 
input-output  multipliers.  In  particular,  we  are  interested  in  forecasting  quarterly  final  demand 
components from a series of sectoral value added. The Monthly Estimator of Economic Activity 
(EMAE) is  one  of  the  most  important  economic  situation indicators  provided by the  National 
Institute of Statistics and Censuses (INDEC) of Argentina. It’s a leading indicator for economic 
activity,  and  anticipates  the  evolution  of  quarterly  national  accounts.  Using  Gosh’s  supply 
multipliers, it is possible to forecast the evolution of final demand components from the year 2004 
to 2023. In addition, these estimations are improved by constructing a time dimension, a quarterly 
distribution for the effects of the multipliers. Two alternatives are presented. First, we explore a 
distributed lag model (DLM) with no restrictions over the coefficients. Afterwards, we demand that  
the supply multipliers are not to be modified by the coefficients of the regression, so all betas must 
sum to unity and be non-negative. This transform the DLM model into a  quadratic optimization 
problem.  The  results  shows  that  final  demand  forecast  can  be  improved  by  considering  this 
temporal distribution. Specially in the case of Argentina’s (mostly agricultural) exports, when the 
creation of value added tends to be lagged from its commercialization.
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Introduction

Forecasting economic aggregates is a key requirement for almost all  policy makers. 
Public  administrations,  international  organizations,  private  enterprises  and  institutions,  they  all 
somehow rely on a set of assumptions over the future course of demand, supply and economic 
activity.

From  the  mid  1970’s  and  onwards,  with  the  consolidation  of  the  Box-Jenkins 
methodology,  time series analysis has become the primary tool used for short and medium term 
forecast  (Urbisaia  and Brufman 2000,  13–16,  79–81,  167–71).  This  approach exhibits  a  much 
greater  emphasis  in  accuracy  than  the  more  theoretically  grounded  paradigm  of  the  Cowles 
Commission   (Qin 2013,  4–23).  Computational  power has  become increasingly cheap,  and the 
general availability of time series data, produced by the same information technology revolution, 
certainly contributed to  the consolidation of  this  family of  methods.  Particulary,  autoregressive 
integrated moving average models (ARIMA) and vector autoregression models (VAR) dominate 
the mainstream landscape of short term and medium term forecast2. The one notable exception to 
this trend is principal component analysis.

In parallel to the ascent of time series models, input-output framework was also widely 
used for projection purposes, especially for long term forecast. One of the seminal papers in this 
respect is Cornfield  et al (1947a; 1947b), whom projected the level of final demand needed to 
achieve full  employment  in  the USA, by the year  of  1950.  Soon after,  the  question about  the  
convenience of using input-output matrices for such a task arose. The comparison of input-output 
projections against other simpler methods (like mere extrapolation, or multiple regression against  
GDP and time) was tackled by Leontief  (1949), Barnett  (1951) and Arrow (1951). The verdict at 
that time was that input-output was not the best performer (Barnett 1951, 12; Arrow 1951, 5–6), but 
it was a promising technique that “(…) insures consistency among the projections for the various 
industries and guards against forecast which are mutually incompatible in our existing technology.” 
(Arrow 1951, 7).

In Argentina, the first input-output table ever produced was immediately put to use by 
Balboa  (1958). The method was quite similar, but the aim was slightly different: to forecast the 
requirements of domestic production and, more important,  intermediate imports, needed to meet 
certain projected levels of final demand, for the years of 1962 and 1967  (Balboa 1958, 52–70). 
Again,  the same debate was recreated,  with some researchers arguing against  the efficiency of  
input-output  forecasting.  The  considerable  statistical  effort  needed  to  compile  an  input-output 
matrix  must  be  compensated  with  an  accuracy  at  least  greater  than  other  simpler  methods 
(Brodersohn and Guissarri 1968, 743–50).

Building an input-output matrix is not an easy endeavor, as everybody is aware of. But 
things certainly have improved since the 1950’s. The internalization of the input-output framework 
in the core of the Production Account, inside the System of National Accounts 1968 (SNC 1968), 
was a major milestone for both fields of research (Capobianco 2023, 86–87, Annex A). With the 
1993 revision of the SCN, a regular flow of annual supply and use tables could be available, if the  
system was fully implemented. This has contributed to alleviate part of the burden that researchers 
and institutions bear when constructing input-output tables.

For Leontief (1949, 221–22), the empirical contrast of input-output projections was, at 
the same time, an empirical contrast of the hypothesis of constant linear production coefficients3. In 
this context, any discrepancy could be explained as a change in the production function, attributable 
to more circumstantial causes, like price fluctuation and market conditions, or more structural ones, 

2 For a context about ARIMA and VAR models see Gujarati and Porter (2010, 773–89).
3 This was also true for Rey and Tilanus (1963, 462), for whom the systematic errors could be corrected with trend 

corrections to the technical coefficients.
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like technological change (Adams and Stewart 1956, 450–51). The question about the stability of 
the coefficients and its relation with projection error will continue to pop up in future research about  
input-output forecasting4.

The future of both econometrics and input-output analysis was one of articulation and 
integration.  The  first  “theoretical  bridge”  for  this  interaction  was  given  by  Keynesian 
macroeconomics5. Econometric forecast of final demand started to be feed into the standard input-
output open model, like in the Brookings or Wharton econometric models of the US economy (P. P. 
Ghosh,  Ghose,  and Chakraborty  2011,  3–8).  Also,  the  construction  of  an  income-consumption 
linkage  (employment-output  requirements  and  endogenization  of  consumption)  that  overcomes 
some of  the  restrictive  assumptions  of  the  standard input-output  model,  called for  the  need of 
parameter estimation (S. J. Rey 2000, 273–76). At the pinnacle of this trend (end of the 1970’s), it 
was  seen  as  a  complete  integration  of  Keynesian  demand  and  income  with  Leontief’s  inter-
industrial flows, that will allow for full supply and demand interactions (Beaumont 1990, 167). For 
some authors, this was not quite the case (Beaumont 1990, 175–79).

Later on, the change in theoretical preferences of mainstream economics (moving away 
from Keynesianism to monetarism and rational expectations theory) didn’t  stop the articulation 
between input-output  and econometric  methods.  But  it  did  change  its  nature.  With  the  rise  of 
Computable General Equilibrium (CGE) models, econometric tools interacted in a different way 
with the input-output framework  (Miller and Blair 2009, 423–27, 679–82). Instead of a broader 
macro-econometric model for final demand aggregates and labor cost, the new articulation came 
mostly  in  the  form  of  specifying  elasticities  that  are  statistically  based,  for  production  and 
consumption maximizing functions.

In present times, input-output analysis and other techniques like multiple regression, or 
time series analysis, are more seen like complementary approaches than competing ones6. The use 
of econometric techniques is particularly strong in regional science, and in environmental input-
output7.

The temporal dimension in input-output analysis

The most traditional interpretation of the Leontief inverse (L) is a static one, without 
regards for time lags in multiplier effects. Total output resolves into a series of production process 
that are all happening in parallel, and simultaneously, whit the same production function.

The temporal dimension of input-output models was first thought in conjunction with 
the problem of introducing fixed assets and inventories stocks to the model (Miller and Blair 2009, 
639–45). In Leontief’s seminal work about dynamic systems, he presents the concept of a capital 
stock matrix by unit of output (B), that comprises all buildings, machinery, tools and inventories 
needed to meet a year of total output. Given this new matrix, and the production coefficients (A), a 
system of linear difference equations is solved, where future (or present) final demand have impact 
in present (or future) output,  depending if  the model is forward or backward looking  (Leontief 
1966, 220–26). But, “(…) this intertemporal influence is not a result of the fact that production 
takes time, it is entirely the result of the capital goods (…)” (Miller and Blair 2009, 651). Latter on, 
in the decade of 1980, numerous attempts were made to reconcile production (and distribution) time 

4 For  example,  Matuszewski,  Pitts,  and  Sawyer (1963) proposes  a  row correction  factor  for  the  domestic  and 
imported matrices, that implies perfect forecast accuracy. This scalar can be interpreted as a measure of instability  
of all row coefficients  (Matuszewski, Pitts, and Sawyer 1963, 427). It can be seen that such a correction is very 
similar to the first step of a RAS adjustment procedure.

5 For a very extensive review of integrated macro-econometric and input-output models see Ghosh et al (2011).
6 Leontief himself has sometimes posed the problem in terms of two rival techniques, relating the use of multiple 

regression with the restricted availability of economic data to only time series aggregates (Leontief 1949, 218).
7 For example, Wang, Zhao and Wiedmann (2019) uses panel regression and input-output analysis to forecast carbon 

emissions embodied in China-Australia bilateral trade.
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lags with the static input-output model (Miller and Blair 2009, 653–54).
One of those attempts is Romanoff and Levine (1981; 1986), with the development of 

sequential  inter-industry  models  (SIMs).  They  begin  with  the  notion  of  industry  interval,  that 
comprises all time elapsed since start of production to final delivery8. The SIM interpretation makes 
use of the power series approximation of the Leontief inverse (L), but assumes that every power of 
A comprises a  uniform and  synchronized industry interval  (Romanoff and Levine 1981, 182–83). 
Next, they specify two polar forms of inventory management and information flow, that will give 
birth  to  two different  families  of  models:  anticipatory and  responsive.  Either  “(…) production 
precedes a fully known demand stimulus (…)” or “(…) production responds to a known demand 
stimulus (…)” (Romanoff and Levine 1981, 181). This allows them to explain present intermediate 
consumption, in terms of a past, or future, total output. Furthermore, with a mix of anticipatory and 
responsive industries, present intermediate consumption depends upon both of them (Romanoff and 
Levine 1981, 184).

Another approach to this problem was presented by Mules (1983), who also performs a 
temporal decomposition of the power series approximation of L. Mules assumes that each round of 
this process “(…) takes a finite period of time.” (Mules 1983, 199), and the effects are given by the 
direct coefficients matrix (A) only9. The key element introduced are binary matrices for specified 
sectoral  time  lags  that  inhibit  some  of  the  coefficients  of  A from  working  in  some  periods. 
Therefore, given a finite time window, this temporal decomposition will yield total effects that are 
strictly lower than the total effect of the Leontief inverse (Mules 1983, 202–3).

Subsequently, Romanoff and Levine (1986) refined the SIM model, to accommodate it 
for  multi-interval  industry  production  periods,  transportation  delays,  inventory  handling  and 
capacity  expansions.  In  this  context,  the  authors  proposed  a  time  distribution  for  each  of  the 
production coefficients. The L matrix is disaggregated into temporal layers, but for each one, every 
coefficient is different  (Romanoff and Levine 1986, 80–81). Nevertheless, the approach is quite 
demanding  in  terms  of  information.  For  that,  only  tentative  examples  are  given  to  the  reader 
(Romanoff and Levine 1986, 83–85). More recently,  He  et al (2022) presented an algorithm to 
estimate  the temporal  layers  of  production coefficients  (with responsive industries  only),  using 
linear regression over a set of simulated productions and final demands.

Another  recent  approach  over  the  time  dimension  of  input-output  analysis  is  the 
seasonal decomposition  proposed  by  Avelino  (2017).  It  is  indeed  true  that  the  “(…)  loss  of 
information  that  the  temporal  aggregation  imposes  on  the  annual  technical  coefficients  by 
suppressing the  distinct  economic structure  in  each period (…) biases  the  technical  coefficient 
matrix.”  (Avelino 2017, 2). In this novel work, annual inter-industrial flows are decompose into 
intra-year  (quarterly)  tables,  that  are  internally  and  temporally  consistent.  Then,  a  seasonal 
production structure arises (Avelino 2017, 7–12). In turn, this translate to changing backward and 
forward linkages along the year, specially for agricultural activities (Avelino 2017, 15–18).

Our approach to the time dimension will not try to (explicitly) decompose the A matrix, 
or any production coefficient. Conditional to the fact that all required inventories (and means of 
production)  are  available,  production  time does  not  depend  on  any  input10.  It  is  totally  a 
characteristic of the production process itself11.

8 Industry interval can be further broken down into production interval and shipment interval. This quite resembles to  
Marx’s production time and circulation time (Marx 2009, 4:143–49).

9 “A system for modelling input-output responses to an initial impact which does not use the Leontief inverse is  
proposed (…)” (Mules 1983, 197).

10 “Maintenance of material input inventory allows production to be initiated prior to purchasing inputs.” (Romanoff 
and Levine 1981, 182).

11 At this point, it feels convenient to recover the insightful characterization of the industrial production processes 
made by Georgescu-Roegen (1969). They can be thought as a replication of partial processes where “(…) all these  
operations are performed  simultaneously and in a special arrangement.”  (Georgescu-Roegen 1969, 516 original 
italics). The replication and arrangement of all the steps tends to minimize the idleness of what Georgescu-Roegen 
calls “fund factors”, i.e.  the working force and all  tools and equipment  (Georgescu-Roegen 1969, 515–22). In 
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This does not mean that there are no reasons for production coefficients to vary across 
time, on a regular basis (apart from technological change)12. For us and for now, the question of 
changing production coefficients will be put aside. Rather than production and distribution time 
affecting the input coefficients, like in the SIM or Mules models, we will try to capture the temporal 
(quarterly) distribution of the given total effect of an input-output multiplier. The direction will be 
forward  looking,  in  the  sense  that,  for  example,  future  consumption  will  depend  on  present 
production. The chosen multiplier is one with a somewhat controversial history.

The supply interpretation of the input-output framework

The supply driven version of the input-output model has been a subject of long debate 
between  input-output  scholars.  When  it  was  first  presented  by  A.  Ghosh  (1958),  the  author 
assimilated the allocation system to “(…) a planned economy under centralised control with scarce 
material resources and productive capacity with ample supply of available labour.” (A. Ghosh 1958, 
59). In this kind of situations, technical coefficients play a minor role in determining input ratios, 
according to Ghosh perspective13.

The allocation of intermediate inputs occurs following a designated matrix quota (H)14, 
that makes it a linear function of sectoral production (x). So, given a vector (v) of “(..) net national 
income generated (…)” (A. Ghosh 1958, 61), total outlays can be uniquely determined. And thus, 
also final demand available for consumption, investment or foreign trade. This can be expressed in 
the usual matrix form15:

[1]

Where G is known as the Ghosh inverse. The elements of G tell us “(…) the percentage 
increase in industry  i total output due to an initial exogenous one percent increase in industry  j 
output (...)” (Miller and Blair 2009, 548). For that reason, it is also referred as a direct output-to-
output multiplier. In later works, Ghosh comes back with the notion that the allocation model is  
related  to  scarcity of  inputs,  but  leaving aside  the  idea  that  its  only  purpose  is  for  a  planned 
economy16.

After Ghosh’s work, the supply driven model remained in the toolkit of input-output 
researchers for two more decades. Most applications where related to supply restrictions of critical 
inputs  (Miller  and  Blair  2009,  547–48).  At  some  point,  some  scrutiny  over  the  underlying 
assumptions was undertaken and criticism started to arise.

In Oosterhaven (1988), we found a clear example of those critics. For this author, the 
supply driven model  “(…) takes demand for  granted,  i.e.,  demand is  supposed to  be perfectly 

regard  to  inputs,  for  an  optimal  factory  process  “(…)  there  is  no  time-lag  between input  and output  flows.” 
(Georgescu-Roegen 1969, 520 original italics). If the replicated process cannot, by some reason, be arranged in line 
(like in agricultural production), it must be replicated in parallel, imposing idleness in factor funds, and time lags 
between input and outputs (Georgescu-Roegen 1969, 522–28).

12 Indeed, we just review one reason for this to happen, in the seasonal input-output decomposition.
13 The  author  somehow  implies  that  in  a  market  economy,  the  production  function  is  an  optimal  technical  

combination.
14 In past works by the author of the present paper, the allocation matrix was interpreted as a redefinition of physical  

quantities,  such  as  all  sectoral  output  is  equal  to  unity.  This  where  given  the  name  of  “abstract  quantities”  
(Capobianco 2012, 7).

15 Following the usual notation, upper case letters are matrices, lower case letters are column vectors, apostrophe ( ') 
means transposition, hat (^) means a diagonal matrix, tilde (~) means estimated, u is a unit (sum) vector, and lower 
bold case is a scalar.

16 “(…) in the short run excess capacity is not evenly distributed over the different industries and this impedes the free  
flow of supplies in response to a change in the composition of final demand.” (A. Ghosh 1964, 112).
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elastic.”. In the limit,  “(…) purchases are made, e.g.,  of cars without gas and factories without 
machines.”. Altogether, this implies that “(…) the essential notion of production requirements, i.e.,  
the production function, is actually abandoned.”  (Oosterhaven 1988, 207).  There are theoretical 
reasons for why this could be the case. For any set of sectoral growth rates that does not meet very  
specific conditions17,  fixing the  H matrix means a varying  A matrix, and vice versa. The worst 
scenario for the joint  stability of both types of coefficients is  the case of very  uneven sectoral 
growth rates. On this basis, the allocation approach is basically rejected for anything rather than 
descriptive use of forward linkages (Oosterhaven 1988, 209–12).

At the end of his critic, Oosterhaven proposes two refinement of the allocation model, 
that he restricts to supply constrains situations or centrally planned economies (Oosterhaven 1988, 
212–15). One element stands out from both of them: the use of stocks as a buffer between the 
supply and demand driven models18. In the real world, to buy or to sell an item does not necessarily 
mean to immediately use it, either for production or final demand. And in reverse, to productively 
consume an item does not mean that it was just bought a minute ago. It is indeed true that Ghosh’s  
model assumes that all inputs  eventually are processed and passed on. But the time that takes for 
them  to  complete  this  journey  may  vary,  like  we  will  see  in  a  moment.  The  question  of  
“abandoning”  the  production  function  may  need  to  be  reconsidered  with  the  introduction  of 
inventories19.

The article of Oosterhaven sparked a long controversy, that extends to this day20. Some 
time  later,  Dietzenbacher  (1997) re-examined  the  issue,  with  the  objective  of  vindicating  the 
allocation approach as a price model, that yields the exact same results as Leontief’s dual21. In doing 
so,  we think he restated the problem in a  more precise  manner,  that  could serve better  to  the 
objectives of this work:

“Suppose that the value added (or the input of, say, labor) in sector j is increased by one unit. 
Using  the  supply-driven  input-output  model  this  induces  an  increase  of  the  output  in  each 
sector. Hence, in any sector other than the jth, the production is increased without any increase 
in the value-added terms (such as labor and capital).” (Dietzenbacher 1997, 630).

17 Only if outputs from all sectors change at the same rate, then the matrices H and A will be jointly stable (Rose and 
Allison 1989, 452–53). This “turnpike” growth rate, as Miller and Blair calls it (Miller and Blair 2009, 651–52), has 
a long history in twentieth centuries debates over Theory of Value and growth models.  It  is  the same as von 
Neumann’s coefficient of expansion of the whole economy, and Shaikh’s rate of pure expanded reproduction. In  
the latter, the composition of net output is the same as total cost, production inputs plus the wage basket of goods 
(constant and variable capital in Marx’s terms), and also total output. Again, this equal composition between total  
product and net product, is the same as in Sraffa’s “standard” commodity (Capobianco 2023, 53–54, Annex A).

18 Interestingly, the author finds some resemblance with the sequential inter-industry models (SIMs) of Romanov and 
Levine, and thinks that a link between the two approaches can be established (Oosterhaven 1988, 214).

19 Oosterhaven is totally aware of this: “Imagine an economy with a shortage only in the supply of primary inputs to  
the first sector, where all sectors hoard capital, labor and intermediate inputs of all other sectors except those of  
sector 1. (…) In this very specific case, the notion of production requirements can be maintained as the hoards will  
serve to satisify those requirements (…)”  (Oosterhaven 1988, 207–8). We must add that almost every sector in 
modern economies is operating always with some sort of inventories and idle capacity. Then, the issue turns into a 
matter of grade.

20 Soon  after,  Rose  and  Alison  (1989) tested  empirically  the  joint  stability  of  the  production  and  allocation 
coefficients, and found very small discrepancies; small enough to consider the supply driven model still plausible.  
Also, Gruver (1989) restricted the use of Gosh’s approach to small changes of primary inputs, where its validity  
could be theoretically established. In a reply, Oosterhaven (1989) reject them both.

21 This is also true. In the end, it is all a matter of assuming fixed prices or fixed quantities: “The requirement is that 
the initial, exogenous change is interpreted as being caused by price changes.” (Dietzenbacher 1997, 635). It can be 
proven that Leontief’s dual also has an interpretation with fixed prices, that yields the same results as Ghosh’s  
allocation model. Also, the classic demand driven input-output model could be interpreted, with fixed quantities,  
into a demand-pull price model, where variations in final demand result into price variations that climb upstream 
into the productive structure. All of this was neatly put down by Oosterhaven (2023), following an original proposal 
of demand prices determining ‘factor’ prices, made by Davar (1989).
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The reason why this restatement is so attractive to us is that it poses the problem strictly 
in terms of value added. Oosterhaven’s critic could be circumvented by appealing to inventories. 
And  that  still  holds  here.  But,  Dietzenbacher  is  asking  a  deeper  question:  why  would  new 
production occur, if  no value added is created in any sector other than the one that triggered the 
action?22 To answer this, we need first to introduce an interpretation of Ghosh’s allocation model,  
within the framework of the Labor Theory of Value (LTV).

As it can be deducted from its name, in this line of thought, labor is the sole source of 
all value created in capitalist production. The form in which new value appears is as “(…) surplus 
value of the product above the value of the factors that has been consumed in generating said  
product (…)” (Marx 2002, 1:252, original italics, own translation), which is called surplus value. 
The consumed factors are, of course, the means of production and the labor power. An important 
qualitative difference arises between these two. The value of the means of production (cc) does not 
modify  its  magnitude,  and  only  reappears in  the  value  of  the  product  (V).  In  contrast,  the 
consumption of the labor power has a twofold consequence. First, it replaces all the value contained 
in the  means of subsistence (cv) needed for her or his reproduction  (Marx 2002, 1:208–9). And 
second, it creates the aforementioned surplus (s). This gives:

[2]

In  this  context,  value  added can  be  understood as  the  total  amount  of  direct  labor 
unfolded by the labor power in the production process23. It comprises the remuneration of the labor 
power, and also all future profits, rents and derived incomes. For this, Marx calls it product of value 
(Marx 2002, 1:256–57). Going down the production chain, a  fraction of this output will  reappear 
later as the value of an intermediate input (cc), in the gross output of other industries. Given a 
vector of all value added and a matrix of this reappearances fractions (allocations), total output of 
all sectors can be recreated (as in equation [1])24.

Let’s say that, for whatever reason, only one sector is modifying (increasing) its output, 
and we assume that further down it will be used. What does that mean in the context of the LTV? If 
no more direct labor is unfolded, i.e. no product of value (value added) is created, the only thing 
that we can conclude is that the productive power of labor has changed (risen in this case) in all the 
other sectors that will use the input25. So, a variation in the output of one sector can tell us, under the 
assumption of a varying productivity of labor, the impact in the output of other sectors26. Also, the 
reader must note that, for any other than labor, all technical relations can remain unmodified (thanks 
to inventories).

How plausible is this interpretation of Ghosh’s allocation model? Well, it depends. For 
small enough differences in sectoral output variations, this becomes  empirically a non-issue, like 

22 “In whatever way output turns out to be produced and allocated among sectors it surely makes little sense that  
value–added is not responsive to a general system reallocation.” (Guerra and Sancho 2010, 2).

23 The identification of value added with the sum of necessarily product and surplus product is quite usual in empirical 
Marxism (Shaikh and Tonak 1994, 41–45). Also, value added is assimilated as the monetary expression of direct 
labor in the so called New Interpretation (Duménil 1983; Foley 1982). In all of this, we are abstracting ourselves 
from the existence of any non-capitalist commodity production and nonproductive activities (in the marxian sense).

24 In a way, this interpretation has some common points with De Mesnard (2009), who argues that Ghosh’s model can 
only be a value (prices times quantities) model, not a prices or quantities model alone (De Mesnard 2009, 366–67). 
We don’t agree with the latter, since variations in value can be thought as product of variation in prices, or in  
quantities.

25 “The same labor, therefore, no matter how much the productive power changes, always yields the same magnitude 
of value in the same periods of time. But in the same period of time it supplies use values in different quantities: 
more, when the productive power of labor increases, and less when it decreases.” (Marx 2002, 1:57, original italics, 
own translation).

26 This is true for any combination of variations that are not all equal (see note N° 17).
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Rose and Alison  (1989, 454–56) already pointed out. Having said that, perfectly  supply-induced 
productivity  adjustments  sound too good to be true.  In  practice,  when increasing output,  some 
layout and organizational improvements could be implemented. In the opposite case, unexpected 
fall of supply may cause  idleness in means of production and labor power. However, there is a 
subtle theoretical point that must be addressed here.

Let  us  rephrase  the  question.  Given  the  labor  power27,  is  there  any  reason  why 
productivity may vary  with changing availability of inputs? The most intuitive answer would be 
yes, with a changing intensity of the labor process. That would have solved our problem, if it were 
not  that  normal  intensity of  concrete  labor  is  a  determinant of  abstract  labor28,  i.e.  value.  Any 
permanent increase in normal intensity of the labor process (or longer working days29) for any type 
of concrete labor, will materialize itself in more use values, but also in more value. So, in order to 
be theoretically consistent, all changes in labor intensity must be transient, not permanent variations 
in the normal intensity of the labor process30.

When interpreted  in  this  context,  Ghosh’s  allocation  model  becomes  a  quite  useful 
device, for planed or market economies all alike. Value added is value, that is created in each sector 
and then provided to all the others. It can point, for example, the need for more productivity growth  
in  sectors  that  will  be  facing  an  increasing  availability  of  inputs.  Furthermore,  it  can  give  an 
intuition,  in  the  short  run,  for  changes  in  sectoral  output,  due  to  induced  changes in  labor 
productivity.

Information sources and methodology

In this section, we will go over all information sources used and we will present our 
methodology  for  forecasting  final  demand  components,  with  a  “forward  looking”  temporal 
distribution. All calculation and graphics were done using the R language and environment for 
statistical computing (R Core Team 2022). All time series used are seasonally adjusted. The ones 
that were not provided in this way, they were adjusted using an exponential smoothing state space 
model, inside the forecast package (Hyndman and Khandakar 2008).

The Monthly Estimator of Economic Activity (EMAE) is a leading indicator of sectoral 
value added. It  is elaborated and published by the National Institute of Statistics and Censuses 
(INDEC) of Argentina. It comprises a total of fifteen (15) sectors31, and it is expressed in quantities 
index numbers with base 2004 = 100. The first thing that we want to analyze is how unbalanced 
was growth during the period 2004-2023. This can be seen in Figure N°1.

27 Guerra and Sancho (2010, 12–17) presented a ‘closure’ for the supply driven model, that could be interpreted as an 
endogenization of wages and salaries. In this case, new value added could be created, but only in the form of  
retributions to the working power. This interesting alternative is analogous to the closure of the demand driven 
model for some class of final demand. For now, we will let this alternative aside and keep the model in its simpler  
form.

28 “Socially  necessary  labor  time  is  the  time  required  to  produce  any  use  value,  under  the  normal  production 
conditions in a given society and with the average degree of skill and intensity of work.” (Marx 2002, 1:48, own 
translation).

29 These two phenomena have equal effect: increased labor expenditure by the labor power (Marx 2003, 2:498–500, 
636–39).

30 To be more precise, they need to correspond with transient variations of the sectoral rate of surplus value. The 
average rate of surplus value is not modified. No new value is created, and also the value (price) of the labor power  
stays equal. For a more detailed description of values as a result of a process of equalizing rates of surplus value,  
see Capobianco (2023, chap. II).

31 The aggregation of sectors matches the ISIC rev. 3.1 industrial classification, at the level of section (“letters”). They 
are the following: Agriculture, hunting and forestry (A); Fishing (B); Mining and quarrying (C); Manufacturing  
(D); Electricity, gas and water supply (E); Construction (F); Wholesale, retail trade and repair (G); Hotels and 
restaurants (H); Transport and communications (I); Financial intermediation (J); Real estate, renting and business 
activities  (K);  Public  administration  and  defence  (L);  Education  (M);  Health  and  social  work  (N);  Other  
community, social and personal service activities (O).
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The matrix should be read, by columns, as the ratio of sectoral growth of the column 
sector  over  the  row  sector.  Sectoral  growth  has  not  been  equal  during  the  period  under 
consideration.  This is  specially true for two very important departments of argentine economy: 
“Agriculture, hunting and forestry” and “Mining and quarrying”. But, if we let these two aside, a  
more balanced growth appears to have occurred between all the other sectors. It is not our objective  
to give and explanation for this behavior, so we move on.

The EMAE is  our “source” time series.  Our target  is  final  demand,  by component, 
which is also elaborated and published by INDEC, as part of the quarterly national accounts. This 
time series is provided at 2004 constant market prices, with a seasonal adjustment. Final demand 
components  available  are:  household  consumption,  public  consumption,  gross  fixed  capital 
formation  (from now on  investment)  and  exports.  Both  consumption  and  investment  comprise 
national and imported production. In the case of consumption, there is no available disaggregation 
of origin, and thus it is not possible to subtract imports from it. In contrast, INDEC provides a  
national and imported series of “machinery and equipment” and “transport equipment”, but without 
a seasonal adjustment. This imported component was deseasonalized, and subtracted from the total 
investment series.

Figure N°1. Cross-ratio of total sectoral growth (annual or triennial average). Argentina 2004-
2023.

Source:  Own  elaboration  based  on  INDEC.  Given  yield  variations  for  climatic  
conditions, the rate of growth of “Agriculture, hunting and forestry” was calculated 
with a triennial mean. Matrix visualizations were made with the corrplot package (Wei 
and Simko 2021).

The last input-output matrix published by INDEC dates back to the year 1997 (INDEC 
2001). Since then, there is no “official”32 symmetric table of intersectoral flows. Having said that, in 

32 Nonetheless,  this  void was filled by many other researchers and institutions whom build updated versions,  or  
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the year 2021, INDEC resumed the publication of annual Supply and Use Tables (SUT)33. The first 
SUT  available  was  from  the  year  2018  (INDEC  2021).  An  industry-by-industry  input-output 
matrix, with fixed product sales structure (type “D”) (European Commission and Eurostat 2008, 
297),  was  constructed  using  this  SUT.  The  matrix  is  expressed  at  basic  prices.  Later,  it  was 
aggregated to match the sectors of the EMAE series. The allocation coefficients were calculated, 
and the Ghosh inverse was obtained.

The EMAE series needed some treatment prior to its utilization. It was converted from 
index numbers to constant prices (millions of AR$), using base year value added from national  
accounts. That turned it into a series at constant basic prices. Finally, the series of total output could 
be reconstructed from sectoral value added (following Equation [1]). For all observations (n):

[3]

Recall that final demand was expressed at market prices. So, to ensure consistency in 
the estimates, taxes (less subsidies) over products must be added. Aliquots for product taxes could 
be directly derived from the 2018 SUT. Nevertheless, this figure included export tariffs. Thereby, 
the latter was independently estimated from foreign trade data. Then, the result was subtracted from 
the total taxes (less subsidies) over products. In the end, two vectors of aliquots were made (q): one 
for investment (in), household (hc) and public consumption (pc), with taxes over products; and one 
for exports (ex), with export tariffs. In addition to taxes (less subsidies) over products, value added 
tax should also be included. Unfortunately, we do not have yet constructed an estimate for this  
element.

Total  final  demand components  (f)  where estimated using 2018 input-output  matrix 
participation (as a diagonal matrix P) across all sectors, with the corresponding taxes in each case 
included.

[4]

All of this resulted in four time series estimated in levels, with a monthly frequency. 
The following step is to aggregate them to a quarterly frequency, in order to match final demands, 
which are a quarterly time series (total observations diminish from 240 to 80).

Results

Let’s begin by exploring the correlation between our crude estimates, with no temporal 
adjustment, and the original final demands series. In  Figure N°2 we can see the plot of the four 
components, and the coefficient of determination.

What immediately strikes the eye is that the estimates for the supply driven model are 
consistently below the observed values. This “underestimation” is particularly gross in the case of 
exports. There could be multiple explanations for this phenomenon34. Partially, it could be attributed 
to the lack of the value added tax, in the case of household, public consumption and investment. 
Regarding exports, the main explanation, we believe, is that the severe drought of the year 2018 

compiled them starting from the Supply and Uses Tables avalilable for the year 2004.
33 “Supply and use tables (SUT) form a central part of the system of national accounts. Their main use is to act as an  

integration framework for balancing the national accounts (…). They also constitute the data base from which (…) 
macroeconomic  models  and  impact  analysis  can  be  derived  in  the  form  of  symmetric  input-output  tables.”  
(European Commission and Eurostat 2008, 295).

34 The magnitude of the underestimation is slightly bigger than what the figures show. The reader should be aware  
that we are not modeling changes in inventories, which is another important part of quarterly final demand. For all 
the period 2004-2023, inventory builds are positive for a total amount of approximately 200 BN AR$.
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acts like a “fall of productivity”, that affects the estimation for the entire period.

Figure N°2. Final demand components, Argentina 2004-2023. Observed vs. estimate. 
Billions of AR$ 2004.

Source: Own elaboration based on INDEC.

Letting that aside, at  a first  glance, there seems to be some correlation between the 
observed values and the estimates. The coefficient of determination is rather high in three cases 
(household  consumption,  public  consumption  and  investment),  but  not  so  with  exports. 
Nevertheless, we should not give yet too much importance to this indicator. It is a well known fact  
in econometrics that correlation tends to be rather higher when time series are expressed in levels 35. 
A greater deal of reliability in short term predictions will be achieved by transforming our time 
series into variations36. This is shown in Figure N°3.

Now the landscape has changed. The most accurate short term prediction is the one for 
investment,  followed  by  household  consumption.  Considering  the  relative  high  weight  of 
construction inside investment, this result should not be a surprise. On the other end, the accuracy 
of exports just falls apart.

35 Sometimes, this argument is put in therms of “spurious correlation”. We do not think that this is the case here.

36 That is, take the first difference against the last period, and divide it by this value: .
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Figure N°3. Final demand components, Argentina 2004-2023. Observed vs. estimate. 
Variations against last period.

Source: Own elaboration based on INDEC.

Why is this happening? One possible explanation could be that national accounts aim to 
register value added when it’s created, in the process of production. At the same time, they register 
its final use when its sold (in this case, exported). If a time lag between these two moments exists, a 
short  term prediction  would  be  harmed.  In  general,  if  it  were  possible  to  capture  the  normal 
temporal distribution of final uses, in relation to when value is created, it could, hypothetically, 
improve the accuracy of predictions. Let’s explore this path.

The first  approximation to  the  temporal  dimension is  fitting a  finite  distributed lag 
model (DLM)37, to each observed final demand component. It is finite in the sense that the number 
of lags is not infinite, and we need to specify them with some criterion (Gujarati and Porter 2010, 
623).  As  we  already  mentioned,  the  SUT that  were  used  to  construct  the  input-output  matrix 
corresponded with a yearly time frame. So, to capture the time window of a full year, we need three  
more additional quarters, i.e. three lags. Therefore, the initial specification of the models is:

[5]

37 For some context in distributed lag models see Gujarati and Porter (2010, 617–52).
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The result of the fitted models can be seen in  Figure N°4. There are many things to 
point out from the results. First, all estimated components of final demand show some sort of lagged 
effect, that affects present values. Almost all beta coefficients are positive (except for the first lag in  
investment);  and  almost  all  of  them are  not  close  to  zero  (except  for  the  third  lag  in  public 
consumption). Furthermore, only a subset of them is statistically significant, i.e. we can trust that 
they aren't different from the estimate value38.

Figure N°4. Summary statistics of DLM for final demand estimates39.

 

Source: Own elaboration based on INDEC.

All and all, the hypothesis contrast for the regression coefficients must not be of much 
concern to us, yet. There are other important considerations that must be addressed first. Let’s take  
a look at the total sum of the coefficients, the “long term multiplier” of distributed lags (Gujarati 
and Porter 2010, 619), in Figure N°5.

38 But this is also subject of further consideration, as the probable presence of multicollinearity increases standard 
error in relation to coefficients, and so the t values (Gujarati and Porter 2010, 624).

39 The tables of summary statistics were made using the stargazer package (Hlavac 2022).
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Figure N°5. Sum of all coefficients (“long term multiplier”) of DLM.

Source: Own elaboration based on INDEC.

The important thing that arises in Figure N°5 is that the total sum of the estimated betas 
does not add up to unity. It is not far from it, but it must be exactly one. The reason behind this  
imperative is simple. If  we allow the total sum of the betas to diverge from unity, we are not  
performing anymore a temporal distribution of a certain input-output multiplier.  We are indeed 
changing its total magnitude, and therefore, backtracking over the assumptions of the input-output 
model. In short words, we are almost leaving the input-output framework. It is essential to secure 
total non-negativity of all betas, and also the total sum must add up to unity. Then, the original 
multiplier effect will remain unchanged.

In  conclusion,  it  is  necessary  to  redo  the  estimation  in  the  light  of  the  above 
considerations. To do so, we must find a framework similar to regression, that allow us to introduce  
the desired restrictions over the coefficients. It is well known in statistics and linear algebra that 
least squares is just a subclass of  convex optimization (Boyd and Vandenberghe 2004, 1–4, 136–
44). Particularly, it is a quadratic program (QP)  (Boyd and Vandenberghe 2004, 152–54). In this 
context,  the  squared  difference  between  observed  and  estimated  values  (the  stochastic  error) 
becomes  the  objective function  (g).  The  vector  of  betas  (b)  for  the  time  lags  becomes  our 
optimization variable. The restrictions that we want to incorporate are the  constraints functions, 
with  their  corresponding  bounds.  Rephrasing  Equation  [5],  and  incorporating  the  desired 
constraints:

[6]

Equation [6]40 poses the constrained least square problem as a QP. We need to find a 
vector b*, that is feasible and optimal. The R package quadprog (Turlach, Weingessel, and Moler 
2019) was chosen for solving the problem. The optimal temporal distribution of supply multipliers 
can be seen in Figure N°6.

The results shown in Figure N°6 are very insightful. The evidence seems to suggest that 
a temporal lag exists between the creation of value added and its realization in the market. That is  
especially true for the case of exports, where more than half of the effect of the output multiplier 
does not impact in the same period. But it is also true, to some extend, for household and public  
consumption. Investment is the only final demand component where the output multipliers fully 
impact in the same period.

40 For notation purposes (the use of the transpose operator), in this equation we left aside temporal references (since 
its a matrix representation of a least square problem), and changed the meaning of the subscript from temporal  
values to categories of final demand.
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Figure N°6. Optimal temporal distribution of supply multipliers, by final demand 
categories.

Source: Own elaboration based on INDEC.

Taking the optimal  temporal  lags (OTL) and using them for  re-estimating the final  
demand components, yield the following forecast (Figure N°7). The predictive power is better that 
in  our  crude  estimates  of  Figure  N°3.  They  are  also  very  similar  to  the  results  of  the  DLM. 
However, we argue that OTL is more congruent with the framework of input-output analysis and its  
assumptions. Given the aggregation of the matrix used (only fifteen sectors), we believe that the fit  
of the models is adequate.

Figure N°7. Final demand components, Argentina 2004-2023. Observed vs. estimate with 
OTL. Variations against last period.

Source: Own elaboration based on INDEC.
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Conclusion

In this essay, we explored the possible interactions between input-output analysis and 
the econometric approach to time series. It is certainly not the first time, since we also exposed a  
rich tradition of crossovers between the two fields. In the beginning, they maybe saw each other as 
competing techniques. But make no mistake, the future of input-output and econometrics is still one 
of integration.

In a sense, input-output can play a role that is somehow analogous to what principal  
component  does  in  short  term forecast.  Leontief  or  Gosh’s  inverses  can  be  thought  as  linear 
transformations that extract a special kind of information from a set of time series, prior to its  
utilization in another model or workflow. The additional benefit is that input-output provides a clear 
economic interpretation of the outcomes.

In our example, the explained variance of final demand by the supply multipliers can be 
fully attributed to the availability of more inputs (the creation of more  product of value). At the 
same time, this means that we must look somewhere else for explanations of the variance that we 
cannot account for. Overall, this highlights the fact that, combining input-output projections with 
OTL gives us a meaningful interpretation to the error term of the final combined forecast41.

One of the reasons for a relatively low explained variance could be, obviously, that the 
allocation (or technical) coefficients may have changed in the span of twenty years 42. Technological 
change,  economies  of  scale,  and  other  factors  can  indeed  change  the  matrix  of  inter-industry 
transactions.  A  possibility  could  have  been  to  quarterly  balance  the  matrices,  with  some 
biproportional technique. But, that would (maybe) stand in the way of capturing the phenomenon of  
temporal lags, that we just presented. 

The estimated structure of temporal lags is not only useful for short term forecasting. It 
could be easily incorporated to add a temporal dimension to impact evaluation and other exercises. 
Furthermore, the proposed framework for estimating optimal temporal lags could be extrapolated to 
the more common demand driven model, provided that the information is available. It still stands 
the question of the  statistical significance of the optimal distribution. This, and the question of 
changing coefficients, could be addressed in future works.

41 Another way of saying this is that a very high fit could also be non desirable, since it does not left any space for  
other effects to enter the scene.

42 The same thing could be said for the relative participation of final demand component in the outputs of every  
industry.
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