
 

1 

 

Assessing the economic losses of destructive events: an analytical framework 

combining production and consumption perspectives 

Ran Xu 1, Xiang Gao 2* 

1. School of Management Engineering, Qingdao University of Technology, Qingdao 266520, 

China; 

2. Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, 

China 

*Corresponding author, full postal address: Academy of Mathematics & Systems Science, CAS, 55 

Zhongguancun Dong Road, Beijing 100190, China; E-mail address: gaoxiang@amss.ac.cn; Fax 

number: 0086-10-82541787 

Abstract  

This study proposes an analytical framework to assess economic losses from destructive events 

in a world characterized by increasing uncertainties and risks. This framework, based on a multi-

regional input-output model, incorporates production and consumption channels and feedback 

income-driven demand contractions. A retrospective study on the 2022 spring COVID-19 

epidemic in Shanghai estimated a GDP loss of 153.8 billion yuan, with a 3.6% error rate. The 

framework's application across various Chinese regions highlights their diverse economic 

profiles. The effectiveness of disaster mitigation policies was investigated under varied scenarios. 

This comprehensive, accurate, and adaptable approach aids in effective policy making. 

Keywords: destructive events; economic impact assessment; multi-regional input-output 

model; production; consumption 

1. Introduction 

The global pandemic COVID-19 had unprecedented impacts on the world over the past 

years (Delardas et al. 2022, Ke and Hsiao 2022). Countries worldwide implemented lockdown 

measures for over a year and repeatedly enforced similar restrictions in response to the 

emergence of new COVID-19 variants (Allen 2022). The pandemic and the associated lockdown 

measures limited people's mobility, including business activities, shopping, and travel, leading 

to a substantial decline in economic activities that affected both consumers and producers (Barro, 

Ursúa and Weng 2020, Zhang et al. 2022, Bonato et al. 2020). Moreover, the impact was further 

propagated through the production network to upstream and downstream industries and regions, 

generating more secondary effects (Inoue and Todo 2020, Gao et al. 2021, Gao, Hewings and 

Yang 2022).   

In addition to the pandemic, the global community faces escalating geopolitical and climate 

risks, leading to more frequent and unpredictable natural and man-made events. Examples 

include the 2022 Russia-Ukraine conflict and the 2023 Turkey earthquake. These destructive 

events could cause stagnation of production and daily consumption, and shock the economy 

following a similar mechanism. Confronting larger uncertainties and challenges, a critical issue 

for authorities and institutions is to assess the short-term and long-term economic impacts of 

such destructive events in a timely and accurate manner. Based on the assessments, proper 

policies can be implemented as soon as possible. After all, “If you can measure it, you can 

manage and improve it.” 
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This study proposes an analytical framework for a comprehensive assessment of economic 

losses resulting from destructive events. The framework is based on a multi-regional input-

output (MRIO) model and incorporates both production and consumption perspectives. 

Compared with existing literature, this framework makes two major contributions to the 

methodology. Firstly, on the production side, this framework goes beyond the traditional input-

output (IO) models by incorporating downstream production losses resulting from the 

interruption of intermediate product supply. This is achieved by introducing the concept of raw 

material inventory days on hand into the model. Secondly, on the consumption side, the 

framework encompasses the notion of non-rigid consumption to capture the reduction in 

household spending resulting from the event, as well as the long-term feedback demand 

contraction generated by income loss. 

The proposed analytical framework enabled us to conduct both retrospective and 

prospective analyses of various destructive events. In the empirical part, we first performed a 

retrospective analysis of the Shanghai lockdown in the spring of 2022 and evaluated its impact 

on China’s economy due to the strong data availability of the case. Further, we conducted 

simulations to assess the potential impacts of similar events occurring in other regions of China 

as an empirical example for a prospective analysis. Moreover, we performed a series of what-if 

analyses to explore the effectiveness of different types of disaster-mitigation policies. The results 

indicate that our analytical framework is an accurate estimator for assessing the economic losses 

from destructive events with high flexibility and applicability, and can shed light on the 

differentiated characteristics and roles of different regions in the national economic system.  

The article is organized as follows. Section 2 reviews the economic impact analysis of 

destructive events such as COVID-19. Section 3 presents the modelling processes of the 

analytical framework. Section 4 provides the data and parameters required by the framework. 

Section 5 presents the results and discusses the empirical analysis. Section 6 concludes.  

2. Literature Review 

Destructive events have the unique feature of being unable to find similar cases and build 

models that rely solely on historical data. Economic models with detailed transmission 

mechanisms are usually employed to evaluate these events. To comprehend the potential impact 

of destructive events on the economy, researchers have identified various plausible mechanisms 

and developed multiple quantitative methods (Brodeur et al. 2021), which establish a solid 

foundation for our analytical framework.  

In terms of impact channels, destructive events usually cut off supply and shrink demand, 

generating disruptions in both production and consumption (Tanaka 2022). On the production 

side, destructive events can disrupt production and trigger cascading effects (Barrot and 

Sauvagnat 2016). Taking COVID-19 as an example, Brinca et al. (Brinca, Duarte and Faria-e-

Castro 2021) found that lockdowns led to negative labor supply shocks and reduced working 

hours. Baldwin (Baldwin 2020) described its economic impact in a circular flow framework and 

pointed out that the breakdown of supply chains would generate cascading effects. The impact 

on production will ultimately be reflected in economic indicators, such as gross domestic product 

(GDP) (Céspedes, Chang and Velasco 2020, Elenev, Landvoigt and Van Nieuwerburgh 2022). 

Bonadio et al. (2021) found that the impact of the pandemic was transmitted through the global 

supply chain, leading to a decline in world GDP growth. 
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On the consumption side, researchers have found that destructive events restrict residents’ 

daily lives, affect their behavior and change their income structure and consumption patterns, 

thereby imposing a negative effect on the economy. According to Baker et al. (2020), in the early 

period of COVID-19, household spending increased in specific sectors, such as retail and food, 

but overall spending subsequently decreased. Clemens and Veuger (2020) found that COVID‐

19 caused a substantial decline in consumption levels, and led to a significant decrease in sales 

and income tax revenues. Furthermore, disasters can cause a vicious cycle in which people's 

income decreases, poverty rates rise, and further affect consumption (Martin et al. 2020). A study 

in Vietnam showed that natural disasters led to 6.9% and 7.1% decreases in per capita income 

and expenditure of Vietnamese households, respectively (Bui et al. 2014). 

As for quantitative models for disaster analysis, the computable general equilibrium (CGE) 

and IO models are widely applied because of their ability to capture interdependencies among 

economic sectors (Okuyama and Santos 2014, McKibbin and Fernando 2021, Eppinger et al. 

2020). For instance, Walmsley et al. (2023) constructed a disaster economic consequence 

analysis framework by implementing the CGE model, Duan et al. (2021) studied the impact of 

COVID-19 on China’s economy by building a quarterly CGE model, and Guan et al. (2020) 

conducted scenario simulations of COVID-19 with an enhanced adaptive regional input-output 

model. The advantage of the CGE model lies in its integration of the relevant relationships 

among multiple economic agents within the framework of general equilibrium theory. However, 

most CGE models are for long-term equilibrium analysis and potentially provide lower impact 

estimates, partly because the causations in models are not all unidirectional and functional 

relationships tend to counteract each other (Koks et al. 2016). In addition, with a larger 

extraordinary shock, the CGE models might fail to find the optimal solutions within their 

theoretical settings owing to the large deviations of the variables from their initial points. In 

comparison, the IO-based model is more flexible and better suited for capturing the impact of 

sudden exogenous shocks on the economy (Tian et al. 2022), and the hypothetical extraction 

method (HEM) is the most notable approach (Dietzenbacher and Lahr 2013, Los, Timmer and 

De Vries 2016). Los et al. (2017) employed HEM to evaluate the economic risks related to Brexit, 

and Hu et al. (2021) assessed the impacts of the US-China trade decoupling. Researchers have 

also used it to analyze the impact of disasters (Wen, Li and Song 2022). Tian et al. (2022) adapted 

the HEM and calculated the economic exposure to regional value chain disruptions due to city 

lockdowns. Nevertheless, the assessment results of HEM are highly dependent on the 

"hypothetical extraction" part (see Section 3.1). With improper or incomplete “hypothetical 

extraction”, this method cannot accurately assess the impact of external shocks on the economic 

system (Dietzenbacher, van Burken and Kondo 2019).  

In summary, in the existing literature, researchers have studied the economic impacts of 

destructive events through multiple mechanisms using quantitative models. When establishing 

quantitative models, it is necessary to consider the comprehensive impacts of external events. 

The analytical framework developed in this study is based on the IO model and HEM while 

simultaneously considering multiple feedback transmission channels, including both production 

and consumption perspectives. Therefore, this framework combines the advantages of CGE 

models in terms of comprehensiveness and IO models in terms of real-time adaptability and 

flexibility. In the empirical stage, we took COVID-19 in Shanghai as an example to demonstrate 

the accuracy of our framework's estimation results. 
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3. Model and Methods 

The economic impacts of destructive events are divided into two main parts in the analytical 

framework: the current impact and the subsequent impact. The current impact refers to the 

economic losses caused by production shutdowns and restricted household consumption 

activities triggered by destructive events, such as lockdowns during pandemics, wars, and 

natural disasters. For instance, during the COVID-19 pandemic, strict control measures in 

certain areas led to the shutdown of industrial production, which caused a significant reduction 

in production capacity. This loss in capacity would spread through the production network, 

affecting other industries and regions both upstream and downstream, referred to as “upstream 

loss” and “downstream loss”. Meanwhile, social activities such as shopping, traveling, and 

various services were severely limited or even suspended due to disruptions in social mobility 

and logistics, leading to a reduction in household consumption, referred to as “consumption loss”. 

The subsequent impact refers to the feedback effects that occur after a destructive event has 

ended. As socioeconomic activities were sluggish during the event, falling household income 

tightens consumer demand, resulting in consequential impacts on the economic system. The 

analytical framework is illustrated in Figure 1. The remainder of this section elaborates on the 

model and assessment methods for the corresponding parts.  

 

Figure 1. Analytical framework for assessing the economic losses of destructive events 

3.1. Multi-regional input-output model and hypothesis extraction method 

We built an analytical framework based on the MRIO model, as shown in Table 1, and 

HEM approach. The MRIO model allows us to conduct region-level analyses by considering 

interregional linkages in goods and services. 

Table 1. Multi-regional input-output (MRIO) table 

Flows 

Intermediate demand Final demand 

Export 
Total 

output R1  ⋯ R𝑟 ⋯ R𝑛  R1  ⋯ R𝑟 ⋯ R𝑛  

Domestic 

intermediate 

input 

Region 1 𝒁𝟏𝟏 ⋯ 𝒁𝟏𝒓 ⋯ 𝒁𝟏𝒏 𝒇𝟏𝟏 ⋯ 𝒇𝟏𝒓 ⋯ 𝒇𝟏𝒏 𝒆𝒙𝟏 𝒙𝟏 

⋮ ⋮ ⋱ ⋮ ⋰ ⋮ ⋮ ⋱ ⋮ ⋰ ⋮ ⋮ ⋮ 

Region 𝑟 𝒁𝒓𝟏 ⋯ 𝒁𝒓𝒓 ⋯ 𝒁𝒓𝒏 𝒇𝒓𝟏 ⋯ 𝒇𝒓𝒓 ⋯ 𝒇𝒓𝒏 𝒆𝒙𝒓 𝒙𝒓 

⋮ ⋮ ⋰ ⋮ ⋱ ⋮ ⋮ ⋰ ⋮ ⋱ ⋮ ⋮ ⋮ 

Region 𝑛  𝒁𝒏𝟏 ⋯ 𝒁𝒏𝒓 ⋯ 𝒁𝒏𝒏 𝒇𝒏𝟏 ⋯ 𝒇𝒏𝒓 ⋯ 𝒇𝒏𝒏 𝒆𝒙𝒏 𝒙𝒏 

Import intermediate  𝑰𝑴𝟏 ⋯ 𝑰𝑴𝒓 ⋯ 𝑰𝑴𝒏  
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Value added 𝒘𝟏 ⋯ 𝒘𝒓 ⋯ 𝒘𝒏 

Total input 𝒙𝟏
′  ⋯ 𝒙𝒓

′  ⋯ 𝒙𝒏
′  

Within the framework of input-output analysis, there is an equilibrium relationship between 

production and consumption, expressed as 𝒁𝒖 + 𝒇 = 𝒙, where matrix 𝒁 gives the values of the 

domestic intermediate input, vector 𝒇 is the final demand for products in each sector, vector 𝒙 is 

the total output, and 𝒖 is the summation vector. We further define the matrix 𝑨 = 𝒁𝒙̂−1 as the 

direct input coefficient matrix reflecting the intersectoral linkages, and the 

element 𝑨𝑟𝑠 of 𝑨 represents the amount of input from region r directly required to produce one 

unit of output in region s. This yields the equation  𝒙 = 𝒁𝒖 + 𝒇 = 𝑨𝒙 + 𝒇 , which can be 

reformulated as: 

𝒙 = (𝑰 − 𝑨)−1𝒇 = 𝑩𝒇        (1) 

This is the core formula of the Leontief input-output model, where 𝑰 is an identity matrix 

and matrix 𝑩 = (𝑰 − 𝑨)−1 is the Leontief inverse matrix, which indicates the total amount of 

direct and indirect inputs required to produce one unit of final demand. 𝒘 denotes the value-

added vector in the table, and let 𝒗 = 𝒘𝒙̂−1 be the value-added coefficient vector, where 𝒗𝑟 =

𝒘𝑟𝒙̂𝑟
−1 represents the value-added included in one unit of production in region r. Then: 

𝒘 = 𝒗̂𝒙 = 𝒗̂(𝑰 − 𝑨)−1𝒇                           (2) 

We adopted the HEM proposed by Los et al. (2016) to calculate the value-added in a certain 

part of the output (denoted as {𝑃_ℎ𝑦}). After extracting the corresponding flows from both the 

intermediate (matrix 𝑨) and final products (vector 𝒇), the direct input coefficient matrix of the 

remaining part is denoted as 𝑨_𝒉𝒚, and the remaining final product vector is denoted as 𝒇_𝒉𝒚. 

Then, the value-added generated by {𝑃_ℎ𝑦} (in other words, the economic loss due to the cut-

down of {𝑃_ℎ𝑦}) can be calculated as follows:  

𝒘_𝒉𝒚 = 𝒗̂(𝑰 − 𝑨)−1𝒇 − 𝒗̂(𝑰 − 𝑨_𝒉𝒚)−1𝒇_𝒉𝒚      (3) 

3.2. Assessment of the current impact of destructive events 

According to the analytical framework shown in Figure 1, the current impact of a 

destructive event comprises two parts: losses caused by production disruptions and household 

consumption restrictions.  

3.2.1. Losses caused by production disruptions 

When a destructive event occurs in a certain region, the local industrial production sectors 

face the risk of shutting down and suspending production. We denote the set of affected regions 

as 𝐸, and the set of production sectors as 𝑀. Define the proportion of recovered production of 

sector i in region r at time t in its total production as 𝜌𝑟𝑖(𝑡). Then, the “equivalent shutdown 

duration” of sector i in region r is calculated as: 

𝐷𝑟𝑖 = ∫ (1 − 𝜌𝑟𝑖(𝑡))𝑑𝑡 
𝑇

0
        (4) 

In this equation, 0 represents the time point when the event occurs and production is halted, 

T refers to the end of the assessment period. Therefore, 𝐷𝑟𝑖 indicates the equivalent duration of 

being completely shut down for sector i in region r owing to the impact of the destructive event. 

The suspension of production activities in the affected region will result in a reduction in output 

as well as a decrease in demand for intermediate products; thus, its impact will propagate to 

upstream regions and sectors through the production network. The ratio of production loss of 

production sectors in the affected region is represented by the vector 𝑳𝒐𝒔𝒔𝑷𝑢𝑝 = (𝐿𝑜𝑠𝑠𝑃𝑢𝑝𝑠,𝑖): 
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𝐿𝑜𝑠𝑠𝑃𝑢𝑝𝑠,𝑖
= { 

𝐷𝑠𝑖

 365 
 , 𝑠 ∈ 𝐸, 𝑖 ∈ 𝑀

0, 𝑜𝑡ℎ𝑒𝑟𝑠
                         (5) 

In addition, in the domestic production network, various regions and sectors are highly 

interrelated and interdependent. Owing to shutdowns and insufficient production, the involved 

regions/sectors are limited in delivering intermediate goods to downstream regions and sectors 

in time. For downstream enterprises that rely heavily on intermediate products from the affected 

regions/sectors, their raw material inventory can partly mitigate the impact of insufficient supply. 

However, if the supply does not recover after the inventory is exhausted, these firms face 

challenges in finding reliable alternative sources in the short term, resulting in capacity gaps. 

Suppose that the raw material inventory of sector i in region s can sustain normal production in 

the case of a supply shortage for a duration of 𝐶𝑠𝑖. The set of sectors in each region with a high 

degree of dependence on intermediate products from the affected regions is denoted as I, and the 

set of intermediate inputs from region r in the production of sector i in region s is denoted 

as  {𝑗|𝑟, 𝑠, 𝑖} . Thus, the ratio of total production loss in production sectors, including both 

upstream and downstream, is represented by the vector 𝑳𝒐𝒔𝒔𝑷 = (𝐿𝑜𝑠𝑠𝑃𝑠,𝑖): 

𝐿𝑜𝑠𝑠𝑃𝑠,𝑖 =

{
 
 

 
 

𝐷𝑠𝑖

 365 
 , 𝑠 ∈ 𝐸

max
 𝑗∈{𝑗|𝑟,𝑠,𝑗},𝑟∈𝐸

𝐷𝑟𝑗−𝐶𝑠,𝑖 

365
 ,   𝑠 ∉ 𝐸, 𝑖 ∈ 𝑀, 𝐶𝑠,𝑖 ≤ max

𝑗∈{𝑗|𝑟,𝑠,𝑗},𝑟∈𝐸
𝐷𝑟𝑗

0 , 𝑜𝑡ℎ𝑒𝑟𝑠

         (6) 

3.2.2. Losses caused by household consumption restrictions 

Destructive events could lead to a substantial decline in household consumption levels since 

residents’ activities would be disrupted. To capture the impact of destructive events on household 

consumption, we decomposed it into two parts: endogenous and exogenous consumption. 

Endogenous consumption is mainly determined by current household income. Exogenous 

consumption, also known as rigid consumption (including basic necessities, such as food, 

healthcare, and housing), is determined by other factors and remains relatively stable. This 

decomposition approach is consistent with the modern consumption theory.   

We denote 𝛽𝑖
∗ as the rigid consumption coefficient, that is, the relatively stable proportion 

of household consumption of product or service  𝑖 , while  1 − 𝛽𝑖
∗  represents the non-rigid 

consumption coefficient, which is the proportion of consumption of product i excluding rigid 

consumption. After a destructive event occurs, non-rigid consumption is usually more severely 

affected. Let  𝑇𝑟  represent the duration of living restrictions for residents in region r, 

and 𝑃𝑟 represent the proportion of the population affected by the event in region r. Thus, the ratio 

of household consumption loss in the affected region 𝑟 is represented by the vector 𝑳𝒐𝒔𝒔𝑪𝑟 =

(𝐿𝑜𝑠𝑠𝐶𝑖
𝑟):  

𝐿𝑜𝑠𝑠𝐶𝑖
𝑟 =

 𝑇𝑟𝑃𝑟 

365
(1 − 𝛽𝑖

∗)         (7) 

3.2.3. The current impact of destructive events  

We combine the above two parts of losses, that is, losses in production and losses in 

household consumption, to estimate the current impact caused by the destructive event. In the 

MRIO framework, we subtract the proportion of non-rigid consumption from the household 

consumption vector in the regions affected by destructive events, including commodities and 

services. Given the close interconnectivity of the domestic economic system, insufficient local 
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demand for products can be supported by other regions. Therefore, we compare the capacity loss 

of local production with the loss of non-rigid consumption. If the remaining capacity of local 

production is insufficient to meet the local rigid consumption needs, the shortfall is 

proportionally allocated according to the consumption structure by region. 

We denote the household consumption vector of the affected region  𝑟 (𝑟 ∈ 𝐸)  as 𝑪𝒓 =

(𝑐𝑠,𝑖
𝑟 ), where 𝑐𝑠,𝑖

𝑟  represents the consumption of product i from region s by consumers in region 

r. 𝐿𝑜𝑠𝑠𝑃𝑠,𝑖 and 𝐿𝑜𝑠𝑠𝐶𝑖
𝑟 are the ratio of production and household consumption loss in region r, 

calculated in Equation (6) and (7) respectively. Thus, using the HEM based on the MRIO model, 

the current impact 𝒊𝒎𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is
1: 

𝒊𝒎𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝒗̂(𝑰 − 𝑨)
−1𝑭 − 𝒗̂(𝑰 − 𝑨_𝒉𝒚𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

−1𝑭_𝒉𝒚𝑐𝑢𝑟𝑟𝑒𝑛𝑡       (8) 

𝑨_𝒉𝒚𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = (𝑰 − 𝑳𝒐𝒔𝒔𝑷̂)𝑨 + 𝑳𝒐𝒔𝒔𝑷̂𝑨𝑟𝑟̂                (9) 

𝑭_𝒉𝒚𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = (𝑰 − 𝑳𝒐𝒔𝒔𝑷̂)(𝑭 − ∑ 𝑪𝒓𝑟∈𝐸 ) + ∑ 𝑪𝒓(𝒖 − 𝒕̃𝒓)𝑟∈𝐸       (10) 

in which 𝒖 is a vector consisting of ones, and 𝒕̃𝑟 = (𝑡̃𝑠,𝑖
𝑟 ) is: 

𝑡̃𝑠,𝑖
𝑟 =

{
 

 
𝐿𝑜𝑠𝑠𝑃𝑠,𝑖  , 𝑠, 𝑖 ∈ 𝐹

𝑟, 𝑖 ∈ 𝑀

max {0, 𝐿𝑜𝑠𝑠𝐶𝑖
𝑟 −

 (1−𝐿𝑜𝑠𝑠𝑃𝑠,𝑖)∑ (𝐿𝑜𝑠𝑠𝑃𝑞,𝑘−𝐿𝑜𝑠𝑠𝐶𝑘
𝑞
)𝑐𝑞,𝑘
𝑟  𝑞,𝑘∈𝐹𝑟

∑ (1−𝐿𝑜𝑠𝑠𝑃𝑝,𝑗)𝑐𝑝,𝑗
𝑟

𝑝,𝑗∉𝐹𝑟
 } , 𝑠, 𝑖 ∉ 𝐹𝑟, 𝑖 ∈ 𝑀

𝐿𝑜𝑠𝑠𝐶𝑖
𝑟 , 𝑖 ∉ 𝑀

  (11) 

where 𝐹𝑟 is a set defined as: 

𝐹𝑟 = {𝑠, 𝑖|𝐿𝑜𝑠𝑠𝑃𝑠,𝑖 > 𝐿𝑜𝑠𝑠𝐶𝑖
𝑟, 𝑖 ∈ 𝑀 }         (12) 

Moreover, according to the analytical framework presented in Figure 1, the current impact 

of destructive events is divided into three components that can be calculated separately. Owing 

to the disruptions of production in the affected areas, the impact on the production sector itself 

and its upstream sectors is referred to as “production loss - upstream”, which is calculated as 

follows: 

𝒊𝒎𝑢𝑝𝑠𝑡𝑒𝑎𝑚 = 𝒗̂(𝑰 − 𝑨)−1𝑭 − 𝒗̂(𝑰 − 𝑨_𝒉𝒚𝑢𝑝𝑠𝑡𝑒𝑎𝑚)
−1
𝑭_𝒉𝒚𝑢𝑝𝑠𝑡𝑒𝑎𝑚     (13) 

where:  

𝑨_𝒉𝒚𝑢𝑝𝑠𝑡𝑒𝑎𝑚 = (𝑰 − 𝑳𝒐𝒔𝒔𝑷𝑢𝑝̂  )𝑨+ 𝑳𝒐𝒔𝒔𝑷𝑢𝑝̂ 𝑨𝑟𝑟̂            (14) 

𝑭_𝒉𝒚𝑢𝑝𝑠𝑡𝑒𝑎𝑚 = (𝑰 − 𝑳𝒐𝒔𝒔𝑷𝑢𝑝̂ )𝑭       (15) 

The impact caused by the disruption of intermediate product supply in the affected sectors, 

leading to production shutdowns in downstream sectors dependent on these intermediate 

products, is referred to as “production loss - downstream”. The calculation method subtracts the 

upstream loss from the total loss on the production side: 

𝒊𝒎𝑑𝑜𝑤𝑛𝑠𝑡𝑒𝑎𝑚 = 𝒊𝒎𝑝𝑟𝑜𝑑𝑢𝑐𝑡 − 𝒊𝒎𝑢𝑝𝑠𝑡𝑒𝑎𝑚     (16) 

where:  

𝒊𝒎𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝒗̂(𝑰 − 𝑨)
−1𝑭 − 𝒗̂(𝑰 − 𝑨_𝒉𝒚𝑝𝑟𝑜𝑑𝑢𝑐𝑡)

−1
𝑭_𝒉𝒚𝑝𝑟𝑜𝑑𝑢𝑐𝑡    (17) 

𝑨_𝒉𝒚𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = (𝑰 − 𝑳𝒐𝒔𝒔𝑷̂)𝑨 + 𝑳𝒐𝒔𝒔𝑷̂𝑨𝑟𝑟̂              (18) 

𝑭_𝒉𝒚𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = (𝑰 − 𝑳𝒐𝒔𝒔𝑷̂)𝑭         (19) 

Finally, the loss caused by restricted household consumption due to destructive events is 

 

1 𝑨𝒓𝒓̂ is the block diagonal matrix with sub-matrices 𝑨𝟏𝟏, ⋯ , 𝑨𝒏𝒏. That is, to avoid the issue of large-

scale double counting, we hypothetically extract the production losses of final products and interregional 

intermediate products in the affected regions.  
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called “consumption loss”, which can be calculated as the difference between the total current 

impact and the loss on the production side: 

𝒊𝒎𝑐𝑜𝑛𝑠𝑢𝑚𝑝 = 𝒊𝒎𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝒊𝒎𝑝𝑟𝑜𝑑𝑢𝑐𝑡                 (20) 

3.3. Assessment of the subsequent impact of destructive events 

Destructive events usually limit social and economic activities and decrease household 

income, resulting in a decrease in endogenous (non-rigid) consumer demand for goods and 

services. We denote 𝛼𝑖
∗ as the income elasticity coefficient of consumption of product or service 

i. Suppose that after a destructive event, the reduction in disposable income in region s is ∆𝑖𝑛𝑐𝑠, 

then the corresponding decrease in consumption demand of region s is ∆𝑖𝑛𝑐𝑠𝜶̂
∗𝑪𝑠. The total 

subsequent impact is the sum of the subsequent impacts of all areas affected by the event: 

𝒊𝒎𝑠𝑢𝑏 = ∑ 𝒗̂(𝑰 − 𝑨)−1∆𝒇𝑠𝑠 = ∑ 𝒗̂(𝑰 − 𝑨)−1∆𝑖𝑛𝑐𝑠𝜶̂
∗𝑪𝑠𝑠     (21) 

4. Data and Parameters 

4.1. Chinese multi-regional input-output table 

The input-output table used in this study is the Chinese MRIO table in 2017 compiled by 

Li et al.(Li et al. 2022), which includes data on transactions between 42 sectors in 31 provincial 

administrative regions in China (excluding Hong Kong, Macao, and Taiwan). This table is non-

competitive and can avoid overestimation issues. We used the value-added and direct input 

coefficients drawn from the MRIO table, which reflect production technology rather than 

economic scale. On the other hand, to better match the volume of the simulated economy with 

the real one, we updated the final demand matrix using the categorized national GDP growth 

rates based on the expenditure approach statistics from 2017 to 2021, published by China’s 

National Bureau of Statistics (NBS). The final demand matrix includes three categories: 

consumption expenditure, changes in inventories, and gross capital formation. In addition, the 

export vector was updated using the growth rate of China's total export of goods and services 

from 2017 to 2021. All data were nominal to ensure comparability between the quantitative 

results and the real-world GDP loss in the empirical case of Shanghai. 

The formula is as follows, where 𝑠 = 1,2,3 represents the three categories of final demand: 

𝒇𝒅𝑠
𝑢𝑝𝑑𝑎𝑡𝑒

= 𝒇𝒅𝑠 ×
 𝐺𝐷𝑃𝑠

2021 

𝐺𝐷𝑃𝑠
2017  , 𝑠 = 1,2,3                 (22) 

𝒆𝒙𝑢𝑝𝑑𝑎𝑡𝑒 = 𝒆𝒙 ×
 𝐸𝑋𝑃2021 

𝐸𝑋𝑃2017
                        (23) 

4.2. Income elasticity coefficient and rigid consumption coefficient  

According to household consumption decomposition theory, we decompose it into two 

parts: endogenous consumption, which is determined by current household income, and 

exogenous consumption (rigid consumption), which remains relatively stable. We adopted the 

decomposition method and the corresponding results proposed by Chen et al. (2016), and 

introduced the consumption decomposition formula as follows:  

{
 𝑐𝑖𝑡 = 𝛼𝑖𝑡𝑥𝑡 + 𝛽𝑖𝑐𝑖(𝑡−1) + 𝜀𝑖𝑡 ,   𝜀𝑖𝑡~𝑁(0,  𝜎𝜀

2)

𝛼𝑖𝑡 = 𝛼𝑖(𝑡−1) + 𝜇𝑖𝑡 ,   𝜇𝑖𝑡~𝑁(0,  𝜎𝜇
2)

               (24) 

where  𝑐𝑖𝑡   is the household consumption of product (or service) i in period t, and  𝑥𝑡   is the 

household income in period t. This formula decomposes household consumption into 

endogenous consumption, 𝛼𝑖𝑡𝑥𝑡  and rigid consumption, 𝛽𝑖𝑐𝑖(𝑡−1) + 𝜀𝑖𝑡. The parameter 𝛽𝑖 can be 
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regarded as the rigid consumption coefficient, that is, the relatively stable proportion of the 

consumption of product 𝑖 , and is not significantly influenced by current income, while 1 −

𝛽𝑖 represents the non-rigid coefficient. 𝛼𝑖𝑡  is the endogenous consumption coefficient of product 

𝑖, and is assumed to follow a random walking process that varies over time.  

The decomposition formula can be estimated using the maximum likelihood estimation 

method with a Kalman filter applied to the time-varying parameter model. The data used were 

annual data on the per capita disposable income of households and expenditures on eight 

consumption categories, including food, clothing, housing, home equipment, facilities and 

services, health and medical care, transportation and communication, education, cultural and 

recreational services, and miscellaneous goods and services. The sample data were from 1989 

to 2008. To ensure the comparability of the data from different years, the expenditure of each 

consumption category was deflated using the corresponding consumer price index, and the 

household income was deflated using the aggregate consumer price index. Based on the 

processed data, a time-varying parameter model was estimated separately for each consumption 

category using the maximum likelihood estimation method with a Kalman filter. Table 2 lists 

the rigid consumption coefficients for each category. 

Table 2. Rigid consumption coefficient of each household consumption category 

Household consumption category Rigid consumption coefficient 

Food 0.500  

Clothing 0.395 

Housing 0.708 

Home equipment, facilities and services 0.282 

Health and medical care 0.523 

Transportation and communication 0.926 

Education, cultural and recreational services 0.653 

Miscellaneous goods and services 0.785 

4.3. Estimation of the household income decline 

To assess the full impact of destructive events, we estimated the magnitude of the 

subsequent income decline of region𝑠 ∆𝑖𝑛𝑐𝑠 by considering the current economic loss it suffered 

and the income level of residents in the region: 

∆𝑖𝑛𝑐𝑠 =
 𝒍𝒄𝑠𝒘̂𝑠

−1𝒊𝒎𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠 

𝐿𝐶𝑠
∙
 𝑤_𝑎𝑣𝑔𝑠−𝑤_𝑚𝑖𝑛𝑠∙12 

𝑤_𝑎𝑣𝑔𝑠
      (25) 

𝒍𝒄 denotes the labor compensation vector in the IO table, whereas 𝒍𝒄𝑠𝒘̂𝑠
−1 represents the labor 

compensation included in one unit of value-added in region s, and  𝐿𝐶𝑠  is the total labor 

compensation in region s. 𝑤_𝑎𝑣𝑔𝑠 and 𝑤_𝑚𝑖𝑛𝑠 represent the per capita disposable income per 

year in region s and the minimum wage standard per month in region s, respectively. Thus, the 

first half of the equation represents the magnitude of the decline in residents' incomes caused by 

the current impact of the destructive event; the second half represents the cushioning effect of 

guaranteed minimum income for residents. 

4.4. Identification of affected downstream manufacturers  

In this study, we assumed that downstream manufacturers with high dependence on 

intermediate products from regions affected by destructive events may not be able to find reliable 

alternative sources in the short term. As a result, they may face a production gap if their supply 

of raw materials is disrupted. First, we need to identify the dependent downstream sectors. We 
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use data from the MRIO table to calculate the proportion of intermediate products used in 

production by each sector in each region from other regions. If the proportion of the affected 

region ranks in the top three among all sources, we consider the downstream sector to be highly 

dependent on intermediate products from the affected area. If the supply of intermediate products 

is not restored when the inventory of raw materials is exhausted, the production of these 

downstream sectors will be affected. 

4.5. Assessment of raw material “days on hand” 

For each production sector, we need to obtain the "days on hand" (DOH) for raw materials, 

which refers to the number of production days before all available raw materials are used. This 

is estimated using the raw material inventory turnover ratio, calculated by dividing the annual 

usage of materials by the year-end inventory balance. The DOH is then determined by dividing 

365 days by this turnover rate. 

The estimation method is as follows: First, we collected the annual ending raw material 

inventory and operating cost data of all listed companies in China from 2016 to 2018 from the 

Wind database and summarized them by the production sector to which they belong. Operating 

costs include raw material, labor, and fixed asset depreciation costs. Next, we used the 

intermediate input data, labor compensation data, and fixed asset depreciation data for each 

sector from the 2017 MRIO table to obtain the proportion of intermediate input (i.e., raw 

materials) in the operating costs for each sector. We used it to extract the raw material costs from 

the operating cost data. Then, we divided the full-year raw material costs by the ending raw 

material inventory to obtain the raw material inventory turnover rate for each sector from 2016 

to 2018, and then divided the time period of 365 days by the turnover rate to obtain the raw 

material DOH. Finally, by taking the average of the estimated results for each sector over the 

three years, we can obtain the average raw material inventory DOH for each production sector.  

5. Empirical Analysis  

5.1. Retrospective analysis: empirical case of Shanghai in 2022 

In mid-March 2022, Shanghai, one of the largest and most dynamic megacities in Asia, 

experienced a surge of the COVID-19 outbreak. To control the spread of the virus, the local 

government implemented a provincial-level lockdown policy that covered almost the entire city 

of Shanghai for the majority of the second quarter of 2022. This event eliminated the interference 

of other factors and generated comparable real-world economic statistical data (e.g., GDP 

growth) to validate the reliability and accuracy of our framework, thus making it a suitable case 

study.  

In addition to the parameters introduced in Section 4, some essential input variables are 

required for the analysis framework. These variables include: 1) the equivalent shutdown 

duration of production sectors in the affected region 𝐷𝑟𝑖, 2) the length of time during which 

residents’ lives are restricted 𝑇𝑟, and 3) the proportion of the population affected 𝜃. To estimate 

the equivalent duration of production shutdowns that determine the proportion of production 

losses, we used the monthly electricity-generating capacity data published by NBS. Specifically, 

we calculated the decline rate in Shanghai's electricity-generating capacity during the lockdown 

period from March to June 2022, compared with the same period in 2021. We assumed that this 

decline rate was equivalent to the monthly average production loss ratio. By multiplying the 

decline rate by the number of days in each month and summing them up according to Equation 
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(4), we obtained the equivalent shutdown duration of 32.8 days, which represents the production 

sector’s loss2. 

Regarding the duration of residents' living restrictions and the proportion affected, the 

provincial-level lockdown policy was implemented from March 28th to May 31st, 2022, totaling 

65 days. However, even in June, residents' daily lives only partially recovered. According to the 

Shanghai Transportation Industry Operation Briefing, the total number of urban transportation 

passengers in June decreased by 52.3% compared with the previous year. Therefore, we assumed 

that all residents in Shanghai were affected during the 65-day lockdown, and 52.3% of residents 

were affected in June3. 

Our results show that the current impact of the event, attributed to production and 

consumption losses, amounts to 533.5 billion yuan in value-added, of which Shanghai's loss is 

153.8 billion yuan. According to statistics from the Shanghai Bureau of Statistics, the regional 

GDP of Shanghai in the second quarter of 2022, calculated at comparable prices, decreased by 

13.7% compared with the same period last year, which is a loss of 148.3 billion yuan. This 

indicates that our estimated results have an error of only 3.6% compared to the actual data. 

A more detailed categorization of the economic losses caused by this event is presented in 

Table 3. According to the analytical framework, the current impact can be divided into three 

components. Due to the production shutdown in the affected region, the impact on itself and the 

upstream regions and sectors providing intermediate products, referred to as “production loss - 

upstream”, is 303.1 billion yuan in value-added, accounting for more than half of the total current 

impact. The loss caused by downstream sectors' shutdown due to the interruption of intermediate 

product supply, referred to as “production loss - downstream”, is 142.0 billion yuan. The 

“consumption loss” caused by reduced household consumption is 88.4 billion yuan. Additionally, 

there is a potential loss of 51.3 billion yuan, which is the subsequent impact of the decline in 

household income and consumer demand4.   

Table 3. Economic losses caused by the destructive event in Shanghai 

Economic impact category Losses in VA (billion yuan) Percentage (%) 

Current impact  533.5 - 

- Within Shanghai 153.8 28.8% 

Production loss - upstream 303.1 56.8% 

Production loss - downstream 142.0 26.6% 

Consumption loss 88.4 16.6% 

Subsequent impact 51.3 - 

- Within Shanghai 16.2 31.6% 

The impact of Shanghai’s COVID-19 shutdown spread to other regions through the 

domestic production network. Using the proposed framework, we can further analyze the current 

 

2  In this case, we identified the manufacturing and construction sectors as the affected industrial 

production sectors, with mining being unaffected. 

3 The lockdown primarily took place in the second quarter, and its economic impact was mainly 

reflected in the second-quarter economic data. Therefore, we chose this time period as the research 

object and compared the estimated results with the actual data. 

4 The subsequent impact takes time to manifest and therefore is not compared with actual data 

alongside the current impact. 
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impact of a destructive event by identifying the regions and sectors with the highest losses, as 

depicted in Figure 2. Among the most affected regions, aside from Shanghai itself, Guangdong, 

Jiangsu, and Zhejiang Provinces are economically developed areas with the highest GDP in 

China. They are also geographically close to Shanghai and have strong economic ties with the 

city. The Henan and Jilin Provinces are closely connected to Shanghai through the supply chain. 

They supply consumer goods and intermediate products to Shanghai, such as food and energy 

products, and also rely on products from Shanghai. The most affected sectors in these regions 

include transport equipment manufacturing, a key industry in Shanghai. This sector suffers the 

most significant loss and causes chain reactions in the same sectors in other regions. On the other 

hand, chemical products and wholesale and retail trades, which are essential to residents’ lives, 

also experience large losses.  

 

Figure 2. Regions that suffer the highest current impact of the destructive event in Shanghai 

and their corresponding sectors 

5.2. Prospective analysis: simulations on destructive event risks in regions of China  

As an empirical example of prospective analysis, we simulated the impact assuming a same 

destructive event occur in other regions (using the same input variables). The results shed light 

on the differentiated characteristics and roles of various regions in the national economic system.  

The current impact of the destructive event in each region is ranked from high to low, and 

its three components are presented in Figure 3. If a similar destructive event were to occur in 

economically developed regions like Guangdong, Jiangsu, and Zhejiang, the resulting losses 

would be greater.  

From the perspective of the three components, production disruption causes a high 

proportion of losses, with upstream losses being dominant. Meanwhile, in certain regions like 

Henan, Chongqing, and Jilin, the downstream losses caused by disruptions in intermediate 

product supply are relatively higher than those in other regions. This indicates that these regions 

act as crucial suppliers in the production supply chain, upon which many downstream regions 

and sectors depend. For example, in Henan Province, the main production sectors that 

downstream sectors depend on include food, textiles, clothing, and non-metallic mineral 

products. Chongqing is mainly relied upon by the surrounding regions of Yunnan, Guizhou, and 

Sichuan, while Jilin primarily influences the surrounding northeastern regions of Heilongjiang 

and Liaoning.   

In addition, the percentage of losses attributed to consumption decline is relatively low. 
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Regions with higher proportions of consumption loss are mainly located in the less industrially 

developed western area of China, leading to a relatively smaller overall impact. Detailed 

estimation results are available in Appendix Table A1.  

 

Figure 3. Ranking of current impact caused by destructive events in various regions 

Figure 4 illustrates the distribution of the current impact of destructive events in each region. 

The horizontal axis represents where the event occurs, and the vertical axis represents the 

distribution of losses. On the diagonal line, the economic loss is undoubtedly highest in the 

region itself. In regions like Shandong, Hubei, and Hunan, the proportion of their own losses is 

higher, indicating that these regions are relatively self-sufficient in the production network. In 

some regions, the losses are widely distributed across different areas. This includes two 

situations: one where regions cannot be self-sufficient and rely on other regions for imports, like 

Hainan and Shaanxi, and the other where regions have extensive external connections in the 

supply chain, like Jilin and Henan. Hence, simulations of loss distribution resulting from 

destructive events can be used to assess economic connectivity between regions and evaluate 

associated economic risks.  

 

Figure 4. Distribution of current impact caused by destructive events in various regions  

The ranking of the subsequent impacts caused by the destructive event in each region and 

the corresponding losses incurred within each region are shown in Figure 5. In regions with 
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larger economic volumes, losses are still higher. Shandong Province has a notably high 

concentration of losses within the region, suggesting that its residents primarily buy locally 

produced consumer goods and services. By contrast, Henan, Shanghai, and Chongqing have 

relatively low percentages of losses within their respective regions, indicating that their residents 

buy more consumer goods and services from all over the country. 

 

Figure 5. Ranking of subsequent impact caused by destructive events in various regions 

5.3. What-if analysis: simulation of disaster mitigation policies 

In this section, we present a series of what-if analyses based on the simulations in Section 

5.2, to explore the effectiveness of various coping policies on mitigating the losses caused by 

destructive events. By adjusting the parameters and input variables in the analytical framework, 

we have the flexibility to assess the economic losses under different scenarios. 

5.3.1. Effective production management measures 

The implementation of measures such as safe passage and closed-loop management 

(minimizing factories’ exposure to the outside to maintain smooth operation) can effectively 

reduce the duration of production shutdowns. Figure 6 presents the mitigated economic loss 

values and percentages for each region, achieved through a 10% reduction in production 

downtime from destructive events. This approach helps minimize the economic losses from 

production disruptions and ensures a more effective recovery process. 

 

Figure 6. Policy mitigation effects of reducing production shutdown duration in various 

regions 

5.3.2. Ensuring the household livelihoods  

To minimize consumption losses, measures such as community group purchasing can be 

adopted to offer residents access to products and services other than necessities during 
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destructive events. This ensures that household consumption is maintained at a certain level, 

thereby minimizing the impact on the overall economy. Figure 7 presents the percentage of 

economic losses that could be mitigated by a 10% reduction in consumption loss for each region. 

 
Figure 7. Policy mitigation effects of reducing consumption loss in various regions 

5.3.3. Ensuring transportation and core supply chain resilience 

By implementing security measures to protect transportation and critical supply chains in 

core industrial sectors, downstream disruptions can be minimized. This approach improves the 

overall resilience of production and supply networks and reduces losses in related sectors. 

Supply chain resilience is mainly reflected in manufacturers reducing their reliance on their 

prime suppliers. In this framework, the policy simulation is conducted by considering the 

downstream sector to be affected by the intermediate supply cutoff only if the affected area is 

the top one or top two sources of supply (instead of the top three, as originally set), referred to 

as Policy I and Policy II, respectively. This means that the downstream sectors are less vulnerable 

to the supply cutoffs. Figure 8 illustrates the economic losses that can be mitigated by these two 

types of policies, both in value and percentage. 

 

Figure 8. Policy mitigation effects of protecting critical supply chains in various regions 

5.3.4. Implementing post-disaster recovery measures 

Post-disaster measures, such as issuing shopping vouchers and subsistence subsidies, can 

be employed to stimulate consumption and mitigate the long-term economic impact of 

destructive events. Figure 9 presents the values and percentages of subsequent economic losses 

that can be mitigated through a 50% reduction in consumption loss resulting from income loss. 

The proactive measures that encourage consumption help expedite post-disaster recovery and 

prevent the vicious cycle where declining incomes lead to further reductions in consumption. 
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Figure 9. Policy mitigation effects of reducing subsequent consumption loss in various regions 

6. Conclusion 

As global uncertainties and threats persist, the occurrence of destructive events, whether 

natural or man-made, has the potential to disrupt production and consumption, leading to a 

significant impact on the overall economy. This study developed an analytical framework using 

the MRIO model and HEM to assess the economic losses from destructive events. The value of 

this framework lies in its unique combination of the production and household consumption 

perspectives. On the production side, we took into account both the upstream and downstream 

production loss due to the supply interruption. On the consumption side, we incorporated the 

concept of non-rigid consumption into the model and captured both short-term and long-term 

declines in household consumption. The proposed analytical framework advanced the set of 

tools available for accurately evaluating the potential economic damages of destructive events. 

Moreover, it can provide valuable insights for policy-making through simulations.  

Using the updated 2017 Chinese MRIO table, we applied the analytical framework to assess 

the aggregate impact of the epidemic outbreak in Shanghai, China in 2022. We estimated that 

the epidemic crisis caused Shanghai to suffer a loss of 153.8 billion yuan in GDP value in the 

second quarter of 2022, with an error of only 3.6% compared to the actual data. Additionally, a 

prospective analysis was conducted to simulate the impact of such events in various regions of 

China. The results provide estimates of economic losses resulting from destructive events in 

each region, facilitating an analysis of the characteristics and roles of different regions within 

the national economic system. 

The results show that regions characterized by larger economic scales, such as Guangdong, 

Jiangsu, and Zhejiang exert a more significant impact on the national economy in the event of 

such destructive occurrences. Regions with a higher self-reliance, such as Shandong, Hubei, and 
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external economic connections, such as Hainan and Shaanxi, which heavily rely on provincial 

imported consumer goods, or Jilin and Henan, which have strong interregional links in the 

production supply chain, are likely to exert a greater influence on other regions. Furthermore, 

what-if analyses provide valuable insights into the effectiveness of various mitigation policies. 

By adjusting the parameters and input variables of the analytical framework, policymakers can 

effectively customize their strategies to address specific challenges and promote resilience in the 

face of uncertainty.  
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evaluating the impacts of the Russia-Ukraine conflict on the global economy or the impacts of 

extreme weather events on China's regional or global economy. The limitation of this method 

inherits from its reliance on the IO method, as it does not consider the potential impact of price 

effects. However, the proposed double-sided approach indirectly captures the impact of price 

changes. After all, both the supply and demand sides are affected by prices. Another issue 

associated with the application of this method is the need for precise parameter calibration to 

ensure the reliability of the results. By carefully adjusting the parameters in this methodology, 

we can take into account the price effects and well picture the economic damages resulting from 

the destructive event. The proposed methodology sheds light on the risk management of 

emerging events. It enables the government to conduct stress tests for different destructive events 

and evaluate the corresponding economic risks and potential coping policies. 
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Appendix 

Table A1. Ranking of current impact caused by destructive events in various regions 

Ranki

ng 
Province 

Consumption loss 
Production loss 

Total 

loss 
upstream downstream 

Value Proportion Value Proportion Value Proportion 

1 Guangdong 248.5  14.6% 1071.4  62.8% 384.9  22.6% 1704.8  

2 Jiangsu 191.0  14.0% 925.7  67.7% 250.7  18.3% 1367.4  

3 Henan 119.9  11.9% 732.2  72.6% 155.9  15.5% 1008.1  

4 Zhejiang 113.3  11.3% 628.9  62.8% 259.2  25.9% 1001.3  

5 Shandong 184.9  20.8% 577.8  65.1% 124.6  14.0% 887.3  

6 Chongqing 67.9  11.6% 347.0  59.4% 169.1  29.0% 584.1  

7 Shanghai 68.4  12.2% 398.5  71.1% 93.6  16.7% 560.4  

8 Anhui 88.4  16.6% 303.1  56.8% 142.0  26.6% 533.5  

9 Jilin 79.3  16.8% 355.5  75.1% 38.5  8.1% 473.3  

10 Hebei 30.4  6.7% 275.5  60.4% 150.3  32.9% 456.3  

11 Jiangxi 56.8  13.0% 262.6  60.3% 115.9  26.6% 435.3  

12 Beijing 97.6  23.8% 286.2  69.8% 26.4  6.4% 410.1  

13 Fujian 66.6  16.6% 314.1  78.2% 21.1  5.3% 401.8  

14 Hunan 92.0  23.0% 304.9  76.0% 4.1  1.0% 401.0  

15 Hubei 108.7  27.3% 287.8  72.4% 1.1  0.3% 397.6  

16 Shannxi 94.8  26.1% 183.0  50.4% 85.7  23.6% 363.4  
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17 Guangxi 71.6  19.8% 258.9  71.4% 31.9  8.8% 362.4  

18 Sichuan 79.3  23.2% 234.7  68.6% 28.3  8.3% 342.3  

19 Liaoning 63.0  19.1% 217.0  65.9% 49.1  14.9% 329.1  

20 Tianjin 40.4  14.8% 178.0  65.2% 54.6  20.0% 272.9  

21 Guizhou 65.1  29.9% 152.5  70.1% 0.0  0.0% 217.6  

22 Inner Mongolia 54.1  25.7% 139.7  66.4% 16.7  7.9% 210.5  

23 Heilongjiang 45.7  25.7% 114.8  64.5% 17.6  9.9% 178.1  

24 Yunnan 64.9  38.0% 102.5  59.9% 3.5  2.1% 170.9  

25 Shanxi 54.4  36.1% 91.5  60.8% 4.7  3.1% 150.7  

26 Xinjiang 32.4  23.2% 103.2  73.8% 4.2  3.0% 139.8  

27 Gansu 31.4  30.7% 62.6  61.3% 8.1  8.0% 102.1  

28 Ningxia 15.1  22.2% 49.0  72.1% 3.8  5.7% 68.0  

29 Hainan 18.6  31.9% 39.8  68.1% 0.0  0.0% 58.5  

30 Qinghai 8.3  27.7% 21.5  72.2% 0.1  0.2% 29.8  

31 Tibet 4.2  21.1% 15.7  78.9% 0.0  0.0% 19.9  

 


